• 제목/요약/키워드: Direction Simulation Monte Carlo

검색결과 67건 처리시간 0.024초

Measurement and Arrival Direction Estimation of Supersonic Flight Sonic Boom (초음속 비행체의 소닉붐 측정과 도래각 추정)

  • Ha, Jae-hyoun;Jung, Suk Young;Lee, Younghwan;Jin, Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제49권3호
    • /
    • pp.175-183
    • /
    • 2021
  • This paper studies measurement of sonic boom created by supersonic flight and its arrival angle estimation techniques. Since sonic boom propagates as an impulsive noise and includes infrasound frequency, we propose measurement instrumentation acquiring sonic boom signature without distortion. And we suggest the methodology for an arrival angle estimation with its performance analysis in accordance with sensor array configurations. The performance of our estimator is verified by comparing theoretical performance bound with statistics of its Monte-Carlo simulation results. Furthermore, we presents the analysis of the sonic boom measurement from real flight tests. This work provides an intuitive concept for sensor array configurations and measurement instrumentation.

Study on Optimization of Detection System of Prompt Gamma Distribution for Proton Dose Verification (양성자 선량 분포 검증을 위한 즉발감마선 분포측정 장치 최적화 연구)

  • Lee, Han Rim;Min, Chul Hee;Park, Jong Hoon;Kim, Seong Hoon;Kim, Chan Hyeong
    • Progress in Medical Physics
    • /
    • 제23권3호
    • /
    • pp.162-168
    • /
    • 2012
  • In proton therapy, in vivo dose verification is one of the most important parts to fully utilize characteristics of proton dose distribution concentrating high dose with steep gradient and guarantee the patient safety. Currently, in order to image the proton dose distribution, a prompt gamma distribution detection system, which consists of an array of multiple CsI(Tl) scintillation detectors in the vertical direction, a collimator, and a multi-channel DAQ system is under development. In the present study, the optimal design of prompt gamma distribution detection system was studied by Monte Carlo simulations using the MCNPX code. For effective measurement of high-energy prompt gammas with enough imaging resolution, the dimensions of the CsI(Tl) scintillator was determined to be $6{\times}6{\times}50mm^3$. In order to maximize the detection efficiency for prompt gammas while minimizing the contribution of background gammas generated by neutron captures, the hole size and the length of the collimator were optimized as $6{\times}6mm^2$ and 150 mm, respectively. Finally, the performance of the detection system optimized in the present study was predicted by Monte Carlo simulations for a 150 MeV proton beam. Our result shows that the detection system in the optimal dimensions can effectively measure the 2D prompt gamma distribution and determine the beam range within 1 mm errors for 150 MeV proton beam.

Evaluation of Response Variability of Functionally Graded Material Beam with Varying Sectional Area due to Spatial Randomness in Elastic Modulus along Axial Direction (기능경사재료 변단면 보에서 축방향 탄성계수의 공간적 불확실성에 의한 응답변화도 평가)

  • Noh, Hyuk Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제27권3호
    • /
    • pp.199-206
    • /
    • 2014
  • In this paper, a scheme to evaluate the response variability for functionally graded material (FGM) beam with varying sectional area is presented. The randomness is assumed to appear in a spatial domain along the beam axis in the elastic modulus. The functionally graded material categorized as composite materials, however without the drawbacks of delamination and occurrence of cracks due to abrupt change in material properties between layers in the conventional composite materials. The functionally graded material is produced by the gradual solidification through thickness direction, which endows continuous variation of material properties, which makes this material performs in a smooth way. However, due to difficulties in tailoring the gradients, to have uncertainty in material properties is unavoidable. The elastic modulus at the center section is assumed to be random in the spatial domain along the beam axis. Introducing random variables, defined in terms of stochastic integration, the first and second moments of responses are evaluated. The proposed scheme is verified by using the Monte Carlo simulation based on the random samples generated employing the spectral representation scheme. The response variability as a function of correlation distance, the effects of material and geometrical parameters on the response variability are investigated in detail. The efficiency of the proposed scheme is also addressed by comparing the analysis time of the proposed scheme and MCS.

Preliminary Study for Imaging of Therapy Region from Boron Neutron Capture Therapy (붕소 중성자 포획 치료에서 치료 영역 영상화를 위한 예비 연구)

  • Jung, Joo-Young;Yoon, Do-Kun;Han, Seong-Min;Jang, HongSeok;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • 제25권3호
    • /
    • pp.151-156
    • /
    • 2014
  • The purpose of this study was to confirm the feasibility of imaging of therapy region from the boron neutron capture therapy (BNCT) using the measurement of the prompt gamma ray depending on the neutron flux. Through the Monte Carlo simulation, we performed the verification of physical phenomena from the BNCT; (1) the effects of neutron according to the existence of boron uptake region (BUR), (2) the internal and external measurement of prompt gamma ray dose, (3) the energy spectrum by the prompt gamma ray. All simulation results were deducted using the Monte Carlo n-particle extended (MCNPX, Ver.2.6.0, Los Alamos National Laboratory, Los Alamos, NM, USA) simulation tool. The virtual water phantom, thermal neutron source, and BURs were simulated using the MCNPX. The energy of the thermal neutron source was defined as below 1 eV with 2,000,000 n/sec flux. The prompt gamma ray was measured with the direction of beam path in the water phantom. The detector material was defined as the lutetium-yttrium oxyorthosilicate (Lu0,6Y1,4Si0,5:Ce; LYSO) scintillator with lead shielding for the collimation. The BUR's height was 5 cm with the 28 frames (bin: 0.18 cm) for the dose calculation. The neutron flux was decreased dramatically at the shallow region of BUR. In addition, the dose of prompt gamma ray was confirmed at the 9 cm depth from water surface, which is the start point of the BUR. In the energy spectrum, the prompt gamma ray peak of the 478 keV was appeared clearly with full width at half maximum (FWHM) of the 41 keV (energy resolution: 8.5%). In conclusion, the therapy region can be monitored by the gamma camera and single photon emission computed tomography (SPECT) using the measurement of the prompt gamma ray during the BNCT.

DSMC Calculation of the Hypersonic Free Stream and the Side Jet Flow Using Unstructured Meshes (비정렬 격자 직접모사법을 이용한 희박 유동과 측면 제트의 상호 작용에 관한 연구)

  • Kim M. G.;Kwon O. J.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.126-131
    • /
    • 2004
  • The interaction between the hypersonic free stream and the side jet flow at high altitudes is investigated by direct simulation Monte Carlo(DSMC) method. Since there is a great difference in density between the free stream and the side jet flow, the weighting factor technique which could control the number of simulation particles, is applied to calculate these two flows simultaneously. Chemical reactions are not considered in the calculation. For validation, the corner flow passing between a pair of plates that are perpendicularly attached is solved. The side jet flow is then injected into this comer flow and solution is found for the merged flow. Results are compared with the experiments. For a more realistic rocket model, the flow past a blunted cone cylinder shape is solved. The leeward or windward jet injection is merged with this flow. The effect on the rocket surface is observed at various flow angles. The lambda effect and the wake structure are found like low attitudes. High interaction between the free stream and the side jet flow is observed when the side jet is injected in the windward direction.

  • PDF

Monte-Carlo Simulations of Non-ergodic Solute Transport from Line Sources in Isotropic Mildly Heterogeneous Aquifers (불균질 등방 대수층 내 선형오염원으로부터 기원된 비에르고딕 용질 이동에 관한 몬테카를로 시뮬레이션)

  • Seo Byong-min
    • Journal of Soil and Groundwater Environment
    • /
    • 제10권6호
    • /
    • pp.20-31
    • /
    • 2005
  • Three dimensional Monte-Carlo simulations of non-ergodic transport of a lion-reactive solute plume by steady-state groundwater flow under a uniform mean velocity in isotropic heterogeneous aquifers were conducted. The log-normally distributed hydraulic conductivity, K(x), is modeled as a random field. Significant efforts are made to reduce tile simulation uncertainties. Ensemble averages of the second spatial moments of the plume and plume centroid variances were simulated with 1600 Monte Carlo runs for three variances of log K, ${\sigma}_Y^2=0.09,\;0.23$, and 0.46, and three dimensionless lengths of line plume sources normal to the mean velocity. The simulated second spatial moment and the plume centroid variance in longitudinal direction fit well to the first order theoretical results while the simulated transverse moments are generally larger than the first order results. The first order theoretical results significantly underestimated the simulated dimensionless transverse moments for the aquifers of large ${\sigma}_Y^2$ and large dimensionless time. The ergodic condition for the second spatial moments is far from reaching in all cases simulated, and transport In transverse directions may reach ergodic condition much slower than that in longitudinal direction. The evolution of the contaminant transported in a heterogeneous aquifer is not affected by the shape of the initial plume but affected mainly by the degree of the heterogeneity and the size of the initial plume.

A Study on the Evaluation of Radiation Safety in Opened-Ceiling-Facilities for Radiography Testing (천장 개방형 RT 사용시설의 방사선 안전성 평가 연구)

  • Sung-Hoe, Heo;Won-Seok, Park;Seung-Uk, Heo;Byung-In, Min
    • Journal of the Korean Society of Radiology
    • /
    • 제16권6호
    • /
    • pp.741-749
    • /
    • 2022
  • Radiography-Testing that verify the quality of welding structures without destruction are overwhelmingly used in industries, but many safety precautions are required as radiation is used. The workers for Radiography-Testing perform the inspection by moving the Iridium-192 radiation source embedded in the transport container of the gamma-ray irradiator within or outside the facility. The general facility is completely blocked about radiation from the outside with thick concrete, but if it is difficult for worker to handle object of inspection, facilities ceiling can be opened. A general facility may be constructed using a theoretical dose evaluation method because all exterior facilities are blocked, but if the ceiling is open, it is not appropriate to evaluate radiation safety with a simple theoretical calculation method due to the skyshine effect. Therefore, in this study, the radiation safety of the facility was evaluated in the actual field through an ion chamber survey-meter and an accumulated dose-meter called as OSLD, and the actual evaluation environment was modeled and evaluated using the Monte Carlo simulation code as FLUKA. According to the direction of the irradiation, the radiation dose at the facility boundary was difficult to meet the standards set by the regulatory authority, and radiation safety could be secured through additional methods. In addition, it was confirmed that the simulation results using the Iridium-192 source were valid evaluation with the actual measured results.

On-orbit test simulation for field angle dependent response measurement of the Amon-Ra energy channel instrument

  • Seong, Sehyun;Kim, Sug-Whan;Ryu, Dongok;Hong, Jinsuk;Lockwood, Mike
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제37권2호
    • /
    • pp.211.1-211.1
    • /
    • 2012
  • The on-orbit test simulation for predicting the instrument directional responsivity was conducted by the Monte Carlo based integrated ray tracing (IRT) computation technique and analytic flux-to-signal conversion algorithms. For the on-orbit test simulation, the Sun model consists of the Lambertian scattering sphere and emitting spheroid rays, the Amon-Ra instrument is a two-channel including a broadband scanning radiometer (energy channel) and an imager with ${\pm}2^{\circ}$ FOV (visible channel). The solar radiation produced by the Sun model is directed to the instrument viewing port and traced through the dual channel optical train. The instrument model is rotated on its rotation axis and this gives a slow scan of the Sun model over the full field of view. The direction of the incident lights are fed with scanned images obtained from the visible channel instrument. The instrument responsivity was computed by the ratio of the incident radiation input to the instrument output. In the radiometric simulation, especially, measured BRDF of the 3D CPC was used for scattering effects on radiometry. With diamond turned 3D CPC inner surface, the anisotropic surface scattering model from the measured data was applied to ray tracing computation. The technical details of the on-orbit test simulation are presented together with field-of-view calibration plan.

  • PDF

Reliability-Based Analysis for Rock Slopes Considering Failure Modes (파괴형태를 고려한 암반사면의 신뢰도해석)

  • 이인모;이명재
    • Journal of the Korean Geotechnical Society
    • /
    • 제15권6호
    • /
    • pp.3-16
    • /
    • 1999
  • This paper presents the results of sensitivity analysis based on an example study to verify a newly developed reliability-based model for rock slopes considering uncertainties of discontinuities and failure modes-plane, wedge, and toppling. The parameters that are needed for sensitivity analysis are the variability of discontinuity properties (orientation and strength of discontinuities), the loading conditions, and the rock slope geometry. The variability in orientation and friction angle of discontinuities, which can not be considered in the deterministic analysis, has a great influence on the rock slope stability, The stability of rock slopes including failure modes is more influenced by the selection of dip direction of cutting rock face than any other design variables, The example study shows that the developed reliability-based analysis model can reasonably assess the stability of rock slope.

  • PDF

A numerical study on the molecular transition flow for the rotating blades (회전날개주위 분자천이유동에 관한 수치해석적 연구)

  • Heo, Jung-Sik;Hwang, Yeong-Gyu;Kim, Dong-Gwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제22권5호
    • /
    • pp.640-650
    • /
    • 1998
  • Pumping performances of a helical molecular drag dump(MDP) and of a radial MDPs are numerically analyzed by using the direct simulation Monte Carlo (DSMC) method. A helical- and radial-MDP have rotating pumping channels cut on a cylinder and on a disk, respectively. For a helical MDP, the present results agree quantitatively with the previously known numerical results. For radial MDPs, both of the Type 1 (having pumping channels cut on the stationary disk) and of the Type 2 (having pumping channels cut on the rotating disk) are analyzed to predict their performances for various parameters, i.e., the radius of curvature center of the channel wall, the depth of the channel, the clearance between housing and disk, and the rotating speed. The results show that the performance of the Type 2 is superior to that of the Type 1, and that for all types the pumping efficiency decreases as the clearance increases. Also, the radial type MDP has larger leakage losses in the direction of pumping channel than does the helical one.