• Title/Summary/Keyword: Direction Control

Search Result 2,970, Processing Time 0.038 seconds

Efficient Computation and Control of Geometric Shape Morphing based on Direction Map (방향지도 기반 기하모핑의 효율적인 계산 및 제어 방법)

  • Lee, J.H.;Kim, H.;Kim, H.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.243-253
    • /
    • 2003
  • This paper presents a new geometric morphing algorithm for polygons based on a simple geometric structure called direction map, which is mainly composed of a circular list of direction vectors defined by two neighboring vertices of a polygon. To generate a sequence of intermediate morphing shapes, first we merge direction maps of given control shapes based on a certain ordering rule of direction vectors, and scale the length of each direction vectors using Bezier or blossom controls. We show that the proposed algorithm is an improvement of the previous methods based on Minkowski sum (or convolution) in th aspects of computational efficiency and geometric properties.

Autonomous Navigation for a Mobile Robot Using Navigation Guidance Direction and Fuzzy Control (주행 유도 방향과 퍼지 제어를 이용한 이동 로봇의 자율 주행)

  • Park, Ji-Gwan;Shin, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.108-114
    • /
    • 2014
  • This paper proposes a generation method of a navigation guidance direction and a fuzzy controller to achieve the autonomous navigation of a mobile robot using a particle swarm optimization(PSO) scheme in unknown environments. The proposed navigation guidance direction is the direction that leads a mobile robot to arrive a target point simultaneously with avoiding obstacles efficiently according to the surrounding local informations. It is generated by selecting the most suitable direction of the many directions in the surrounding environment using a particle swarm optimization scheme. Also, a robot can reach a target point with avoiding the various obstacles by controlling the robot so that it can move from its current orientation to the navigation guidance direction using the proposed fuzzy controller. Simulation results are presented to show the feasibility and validity of the proposed robot navigation scheme.

Neural-networks-based Disturbance Observer and Tracker Design in the Presence of Unknown Control Direction and Non-affine Nonlinearities (미지의 제어 방향성과 비어파인 비선형성을 고려한 신경망 기반 외란 관측기와 추종기 설계)

  • Kim, Hyoung Oh;Yoo, Sung Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.666-671
    • /
    • 2017
  • A disturbance-observer-based adaptive neural tracker design problem is investigated for a class of perturbed uncertain non-affine nonlinear systems with unknown control direction. A nonlinear disturbance observer (NDO) design methodology using neural networks is presented to construct a tracking control scheme with the attenuation effect of an external disturbance. Compared with previous control results using NDO for nonlinear systems in non-affine form, the major contribution of this paper is to design a NDO-based adaptive tracker without the sign information of the control coefficient. The stability of the closed-loop system is analyzed in the sense of Lyapunov stability.

Robust Low-complexity Design for Tracking Control of Uncertain Switched Pure-feedback Systems with Unknown Control Direction (미지의 방향성을 갖는 불확실한 스위치드 순궤환 시스템의 추종 제어를 위한 강인 저 복잡성 설계)

  • Lee, Seung-Woo;Yoo, Sung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.153-158
    • /
    • 2017
  • This paper investigates a robust low-complexity design problem for tracking control of uncertain switched pure-feedback systems in the presence of unknown control direction. The completely unknown non-affine nonlinearities are assumed to be arbitrarily switched. By combining the nonlinear error transformation technique and Nussbaum-type functions, a robust tracking controller is designed without using any adaptive function approximators. Thus, compared with existing results, the proposed control scheme has the low-complexity property. From Lyapunov stability theory, it is shown that the tracking error remains within the preassigned transient and steady-state error bounds.

Shift Steering Control of 2-axis ARM Helicopter based on a Neural Network (신경망 학습을 이용한 2축 ARM 헬리콥터의 중심이동 조향법)

  • Bae, Hyun-Soo;Kim, Byung-Chul;Lee, Suk-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.677-683
    • /
    • 2015
  • This paper proposes a helicopter direction adjustment system using barycenter shift. Most conventional methods for direction adjustment of uniaxial helicopters rely on the angle of inclination of the main rotor. However, the inherent burden of the bearing of the main rotor and serious abrasion of the helicopter using the above methods may results in loss of balance. To decrease abrasion and enhance the barycenter stability, the proposed method was used to shift the barycenter of the helicopter instead of the main rotor for direction adjustment. We set a biaxial ARM on a uniaxial helicopter to adjust the direction of ARM pointing as well as to realize stable direction control when the helicopter loses its balance. The method may enhance the landing safety of helicopters in emergencies. Uniaxial helicopters can be controlled under any environment by adjusting the motor parameters of the ARM which is dependent on the center of mass using neural network. The experiment results show that the helicopter can return to the starting position quickly under the external disturbance.

Rotation control for the Yaw-direction of Unicycle Robot (외바퀴 로봇의 Yaw 방향 회전 제어)

  • Hwang, Jong-Myung;Bae, Dong-Suck;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.331-337
    • /
    • 2008
  • The field of robots is being widely accepted as a new technology today. Many robots are produced continuously to impart amusement to people. Especially the robot which operates with a wheelbarrow was enough of a work of art to arouse excitement in the audiences. All the wheelbarrow robots share the same technology in that the direction of roll and pitch are acting as balance controllers, allowing the robots to maintain balance for a long period by continuously moving forward and backward. However one disadvantage of this technology is that they cannot avoid obstacles in their way. Therefore movement in sideways is a necessity. For the control of rotation of yawing direction, the angle and direction of rotation are adjusted according to the velocity and torque of rotation of a motor. Therefore this study aimed to inquire into controlling yawing direction, which is responsible for rotation of a robot. This was followed by creating a simulation of a wheelbarrow robot and equipping the robot with a yawing direction controlling device in the center of the body so as to allow sideway movements.

  • PDF

A Force/Moment Direction Sensor and Its Application in Intuitive Robot Teaching Task

  • Park, Myoung-Hwan;Kim, Sung-Joo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.236-241
    • /
    • 2001
  • Teach pendant is the most widely used means of robot teaching at present. Despite the difficulties of using the motion command buttons on the teach pendant, it is an economical, robust, and effective device for robot teaching task. This paper presents the development of a force/moment direction sensor named COSMO that can improve the teach pendant based robot teaching. Robot teaching experiment of a six axis commercial robot using the sensor is described where operator holds the sensor with a hand, and move the robot by pushing, pulling, and twisting the sensor in the direction of the desired motion. No prior knowledge of the coordinate system is required. The function of the COSMO sensor is to detect the presence f force and moment along the principal axes of the sensor coordinate system. The transducer used in the sensor is micro-switch, and this intuitive robot teaching can be implemented at a very low cost.

  • PDF

Analysis of Knit Fabric Structure with its Voxel Data

  • Shinohara, T.;Takayama, J.;Ohyama, S.;Kobayashi, A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.53-56
    • /
    • 2003
  • For identifying how a sample knit fabric is woven a method to obtain positional information of each yarn of the sample from voxel data made out of its x-ray CT images is newly proposed in this paper. The positional information is obtained by tracing the each yarn. The each yarn is traced by estimating a direction of the yarn in a certain small region in which the yarn can be regarded as straight and moving the region slightly along the estimated direction alternately. The yarn direction is estimated by correlating the voxel data in the region with a three-dimensional yarn model. The effectiveness of this method is confirmed by applying the method to voxel data made out of CT images of a knit fabric experimentally.

  • PDF

Development of a Control and Virtual Realty Visual System for the Tilting Train Simulator (틸팅 차량용 시뮬레이터 적용을 위한 통제 및 가상현실 영상 시스템 개발)

  • Song Young-Soo;Han Seong-Ho;Kim Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.330-336
    • /
    • 2005
  • This paper presents a development of the control and the virtual reality visual system for a tilting train simulator. The user of the tilting train simulator is able to set up the environmental and operating conditions through the user interface provided by the control system. In the control system, an arbitrary track which has user-defined curve radius, length and direction can be generated. The virtual reality visual system provides an artificial environment that is composed of several facilities such as station, platform, track, bridge, tunnel and signaling system. In order to maximize the reality, all of the 3D modeling were based on the real photographs taken in the Jungang line. A dome screen with 1600mm diameter was used to maximize the view angle. The hemispherical screen can ensure the view angle of the 170 degrees of vertical direction and 135 degrees of lateral direction.

The Effects of Visual Direction Control on Balance and Gait Speed in Patients with Stroke (뇌졸중 환자의 시선 방향 조절이 균형과 보행에 미치는 영향)

  • Kwon, Hye-Rim;Shin, Won-Seob
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.3
    • /
    • pp.425-431
    • /
    • 2013
  • PURPOSE: The purpose of this study was to examine the effect of visual control on gait speed and balance in patients with stroke. Static balance and gait speed were investigated with comparison and fixed direction of visual. METHODS: We included twenty-six patients with stroke. Participants were measured static balance while standing on a forceplate with one of 4 different visual direction in front, floor, non-affected side and affected side for 30 seconds. To compare of the gait speed, participants had to walk with one of fixed visual direction. And to compare of gait speed with visual dispersion, gait speed were measured with visual change in left and right, up and down direction every 5m, 2m and 1m intervals. RESULTS: The result of the static balance with fixed visual showed that the affected side and the non-affected side were shown significantly increased sway of total sway length, mediolateral distance, anteroposterior distance, average velocity(p<.05). The gait speed with fixed visual showed that affected side was significantly slower(p<.05). And the gait speed significantly increased as interval of visual dispersion decrease in the sagittal and horizontal plane(p<.05). CONCLUSION: The results from this study showed that the visual direction effected on static balance and the faster visual movement made to increase the gait speed. Therefore the rehabilitation training with visual control may be implemented for stroke patients.