• 제목/요약/키워드: Direction Control

검색결과 2,967건 처리시간 0.036초

근사직교 경계고정 곡선좌표계를 사용한 수치적 격자생성 (The numerical grid generation using the nearly orthogonal boundary-fitted curvilinear coordinate systems)

  • 맹주성;신종균
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.561-565
    • /
    • 1988
  • 본 연구에서는 제어함수를 수식으로부터 유도하여 자동적인 격자간격제어가 가능한 "근사직교 경계고정곡선좌표계"를 생성하는 새로운 방법을 제시하여 2차원영역 에 대한 그 적용을 논의하고자 한다. 논의하고자 한다.

유체력을 이용한 직동식 비례 유량 조절 밸브에 관한 연구 (A Study on a Direct-Type Proportional Flow Control Valve Utilizing Flowforces)

  • 배상기;현장환;이정오
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.68-75
    • /
    • 1998
  • A one-stage direction and flow control valve was studied theoretically and experimentally. A direction and flow control valve maintains a constant flow rate by changing the spool-orifice area under the variation of valve pressure drop, since the spool-orifice area is varied by the action of flowforces on the spool. A direction and flow control valve has the advantage of simple and low-cost structure compared to a conventional flow control valve utilizing a pressure regulating spool which regulates the pressure drop caused by flow through the metering orifice. The static and dynamic characteristics of a one-stage direction and flow control valve was analyzed. Experimental results on the flow control characteristics of the manufactured valve show satisfactory agreement with simulation results.

  • PDF

Compatibility of the Direction Sign on the Pendant Switch of Overhead Cranes

  • Park, Jae Hee
    • 대한인간공학회지
    • /
    • 제34권1호
    • /
    • pp.75-83
    • /
    • 2015
  • Objective: The aim of this study is to suggest the standard of the direction sign on the pendant switch of overhead cranes which can reduce human errors in control. Background: A great number of crane accidents occur in industries. One of the major causes of the accidents is the mistake in the control of cranes by confusing the orientation of crane movements. Nevertheless, three different direction sign styles, 'East, West, South, North (EWSN)', 'Forward, Backward, Left, Right (FBLR)', and arrows for four directions are used without standardization. Method: An overhead crane simulator was installed for a laboratory experiment. It could move along six directions by the control of a pendant switch. 90 participants were evenly assigned to the three different conditions of direction sign styles. The participants were asked to control the pendant switch according to the continuously appearing 16 direction signs on a monitor ahead. The participants were allowed to refer an orientation sign board on the ceiling representing correct movement directions of the overhead crane simulator. Results: The direction sign style, 'EWSN', showed statistically significant better performance in task completion time and number of errors than the other sign styles. The direction sign style, 'EWSN', adopting the cardinal direction system, made the participants clear in direction controls after customizing to the crane movements. However, the direction sign styles, 'FBLR' and the arrows adopting the relative direction system made conflicts in direction controls due to the egocentric view of human. Conclusion: The direction sign style, 'EWSN', is the most appropriate for the standardization of the direction sign on the pendant switch of overhead cranes. Application: The results of this study can be applied to the standardization of direction sign in the legal notification on the safety certifications of crane manufacturing.

다족형 생체모방 수중 로봇(CALEB10)의 각 자유도를 분리한 자세 제어 (Posture Control through Decomposed Control for Multi-Legged Biomimetic Underwater Robot (CALEB10))

  • 이한솔;이지홍
    • 로봇학회논문지
    • /
    • 제13권1호
    • /
    • pp.63-71
    • /
    • 2018
  • This paper describes a study on posture control of the multi-legged biomimetic underwater robot (CALEB10). Because the underwater environment has a feature that all degrees of freedom are coupled to each other, we designed the posture control algorithm by separating each degree of freedom. Not only should the research on posture control of underwater robots be a precedent study for position control, but it is also necessary to compensate disturbance in each direction. In the research on the yaw directional posture control, we made the drag force generated by the stroke of the left leg and the right leg occur asymmetrically, in order that a rotational moment is generated along the yaw direction. In the composite swimming controller in which the controllers in each direction are combined, we designed the algorithm to determine the control weights in each direction according to the error angle along the yaw direction. The performance of the proposed posture control method is verified by a dynamical simulator and underwater experiments.

Obstacle avoidance plan of autonomous mobile robot using fuzzy control

  • Park, Kyung-Seok;Yi, Kyung-Woong;Choi, Han-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2387-2392
    • /
    • 2003
  • In this paper, We designed the local path planning direction algorithmusing fuzzy controller applied fuzzy logic. Algorithm decieded a direction angle by theposition of obstacle, the distance with obstacle, the progress direction of robot, the speed of vehicles and the perception area of sensor. The robot designed with proposed algorithm carried out soft moving without any particular operation, and we could observe that it had very soft curved moving as if an expert drove.

  • PDF

DSP 를 이용한 로봇의 그리퍼 제어장치의 개발 (Development of the Robot's Gripper Control System using DSP)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.77-84
    • /
    • 2006
  • This paper describes the design and implementation of a robot's gripper control system. In order to safely grasp an unknown object using the robot's gripper, the gripper should detect the force of gripping direction and the force of gravity direction, and should perform the force control using the detected forces and the robot's gripper control system. In this paper, the robot's gripper control system is designed and manufactured using DSP(Digital Signal Processor), and the gripper is composed of two 6-axis force/moment sensors which measures the Fx force(force of x-direction), Fy force, Fz force, and the Mx moment(moment of x-direction), My moment, Mz moment at the same time. The response characteristic test of the system is performed to determine the proportional gain Kp and the integral gain Ki of PI controller. As a result, it is shown that the developed robot's gripper control system grasps an unknown object safely.

반송장치에서의 방향제어를 위한 DC모터와 STEP모터 제어기의 성능비교에 관한 연구 (A Study on Perfomance Consideration for Direction Controllers of a Material Transport System by DC motor and Step motor)

  • 한기수;원성홍
    • 조명전기설비학회논문지
    • /
    • 제24권1호
    • /
    • pp.145-151
    • /
    • 2010
  • 영구자석의 반발력을 이용한 반송장치에서 캐리어를 받아 다음 스테이션으로 방향을 전환해주기 위한 회전판의 제어를 수행하기 위한 제어기로서 적당한 모터의 선정을 위하여 두 가지 형태의 제어기를 만들고 이를 비교하여 최적의 제어기를 선정하고자 하였다. 즉 스텝모터를 사용한 마이크로스텝방식의 오픈루프 제어와 DC모터를 사용한 폐루프 제어방식의 DC서보 방향제어기를 설계하고 제작하였다. 이 두 방식의 방향제어기의 성능과 제어특성을 비교하였다.

Control the growth direction of carbon nanofibers under direct current bias voltage applied microwave plasma enhanced chemical vapor deposition system

  • Kim Sung-Hoon
    • 한국결정성장학회지
    • /
    • 제15권5호
    • /
    • pp.198-201
    • /
    • 2005
  • Carbon nanofibers were formed on silicon substrate which was applied by negative direct current (DC) bias voltage using microwave plasma-enhanced chemical vapor deposition method. Formation of carbon nanofibers were varied according to the variation of the applied bias voltage. At -250 V, we found that the growth direction of carbon nanofibers followed the applied direction of the bias voltage. Based on these results, we suggest one of the possible techniques to control the growth direction of the carbon nanofibers.

퍼지-슬라이딩모드 제어기를 이용한 외바퀴 로봇의 자세제어 및 방향제어 (Attitude and Direction Control of the Unicycle Robot Using Fuzzy-Sliding Mode Control)

  • 이재오;한성익;한인우;이석인;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.275-284
    • /
    • 2012
  • This paper proposes an attitude and direction control of a single wheel balanced robot. A unicycle robot is controlled by two independent control laws: the mobile inverted pendulum control method for pitch axis and the reaction wheel pendulum control method for roll axis. It is assumed that both roll dynamics and pitch dynamics are decoupled. Therefore the roll and pitch dynamics are obtained independently considering the interaction as disturbances to each other. Each control law is implemented by a controller separately. The unicycle robot has two DC motors to drive the disk for roll and to drive the wheel for pitch. Since there is no force to change the yaw direction, the present paper proposes a method for changing the yaw direction. The angle data are obtained by a fusion of a gyro sensor and an accelerometer. Experimental results show the performance of the controller and verify the effectiveness of the proposed control algorithm.