• Title/Summary/Keyword: Direct-shear test

Search Result 425, Processing Time 0.024 seconds

Shear performance of AAC masonry triplets strengthened by reinforcing steel wire mesh in the bed and bed-head joint

  • Richard Badonbok Lyngkhoi;Teiborlang Warjri;Comingstarful Marthong
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.149-160
    • /
    • 2023
  • Over the course of the last 4-5 years, India's northeastern region have widely used Autoclaved Aerated Concrete (AAC) blocks to construct load-bearing masonry structures. The aim of this investigation is to examine the shear characteristics of AAC masonry triplet assemblage strengthened by using two techniques, i.e., the bead joint (BJ) and the bed-head joint (BHJ) technique. Three unique variations of wire mesh were involved in the strengthening method. Furthermore, three strengthening configurations were used to strengthen each of the three wire mesh variations and the two-strengthening method, i.e. (-), L and (Z) configuration. The unreinforced and reinforced triplet masonry wallets were tested under direct shear test. From the results obtained, the 'BJ'triplet masonry wallets observed an enhanced in shear strength of about 2.23% to 23.33 % whereas the 'BHJ' triplet masonry wallets observed an enhanced in shear strength of about 22.92% to 50.69%. The "BHJ" strengthening method effectively enhance the shear strength of the triplet masonry wallets compared to the "BJ" and the "UR" wallets with an increase in capacity as the wire mesh strength increases. Furthermore, in terms of the strengthening configuration, the (Z) configuration performs better, followed by the (L) and (-) configuration demonstrating the strengthening configuration effectiveness.

Characteristics for Consolidation and Shear Strength of Bottom Ash Compaction Pile According to Replacement Ratio in Clay (점토지반에 적용된 저회다짐말뚝의 치환율에 따른 압밀침하특성 및 전단특성)

  • Park, Sehyun;Jee, Sunghyun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.57-63
    • /
    • 2010
  • The necessity of effective and economical improvement for soft ground is required more and more as mountains form 70% of country. The soft ground improvement methods for ocean development are sand compaction pile method, displacement method are applied to the soft ground improvement from ocean development pre-loading method, air pressure method, well point method, pack drain method, quicklime pile method etc. Among them, the sand compaction pile method, has many problems such as the economical problem on importing materials due to the lack of sand and destroying the nature while collecting sand. To replace the sand with other alternative materials, a study on the bottom ash compaction pile method because the bottom ash has the similar engineering properties with sand. Therefore, in this study, after compose the complex soil with a replacement rate of 10~80% and a large direct shear test, shear test, consolidation test with replacement rates of bottom ash are performed to estimate whether its shear and consolidation characteristics are suitable for the alternative material of compaction pile method. As a result of test, Shear Strength Parameters tend to be increased in accordance with the increase of replacement ratio of bottom compaction pile, and Settlement Reduction Factor and $t_{90}$ tend to be decreased.

A Constitutive Model for Rotation of Principal Stress Axes during Direct Simple Shear Deformation (직접단순전단변형에 따른 주응력 방향의 회전을 고려한 구성모델)

  • Park, Sung-Sik;Lee, Jong-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.53-62
    • /
    • 2008
  • A constitutive model, which can simulate the effect of principal stress rotation associated with direct simple shear test, is proposed in this study. The model is based on two mobilized planes. The plastic strains occur from the two mobilized planes, and depend on stress state, and they are added. The first plane is a plane of maximum shear stress, which rotates about the horizontal axis, and the second plane is a horizontal plane which is spatially fixed. The second plane is used to consider the effect of principal stress rotation on simple shear tests under different stress states. The soil skeleton behavior observed in drained simple shear tests is captured in the model. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program FLAC. The model is first calibrated with drained simple shear tests on loose Fraser River sand. The measured shear stress and volume change are partially induced by principal stress rotation and compared with model calculations. The model is verified by comparing predicted and measured settlements due to rigid footing resting on loose sands. Settlements predicted by the proposed model were very similar to measured settlements. Mohr-Coulomb model can not consider the effect of principal stress rotation and its prediction was only 20% of measured settlements.

Experimental Study on Bond Strength between Carbon Fiber Sheet and Concrete (탄소섬유쉬트와 콘크리트의 부착강도 실험연구)

  • 유영찬;최기선;최근도;이한승;김긍환
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.168-174
    • /
    • 2001
  • Carbon fiber sheet(CFS) has been widely used for strengthening of the concrete building structures due to its excellent physical properties such as high strength, light weight and high durability. Bond strength or behavior, on the other hands, between carbon fiber sheet and concrete is very important in strengthening the concrete member using CFS. Therefore the bond failure mechanism between CFS and concrete should be fully verified and understood. This study is to investigate the bond strength of CFS to the concrete by the direct pull-out test and the tensile-shear test. In the direct pull-out tests, the bond strength under the various environmental conditions such as curing temperature, surface condition on concrete and water content of concrete are evaluated. Also, the effective bond length, lu and the average bond stress, $\tau$y are examined in the tensile-shear tests. Based on the test results, it is concluded that the curing temperature is the most critical element for the bond strength between CFS and concrete. And, the proper value of lu and $\tau$y is recommended with 15 cm and 9.78∼ 11.88 kgf/$\textrm{cm}^2$ respectively.

Characterization of the Three Dimensional Roughness of Rock Joints and Proposal of a Modified Shear Strength Criterion (암석 절리의 3차원 거칠기 특성화와 수정 전단강도 관계식의 제안)

  • Jang, Bo-An;Kim, Tae-Ho;Jang, Hyun-Sick
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.319-327
    • /
    • 2010
  • Surface roughness profiles were measured from 19 joint samples using a laser scanner, and Joint Roughness Coefficient (JRC) values were calculated from 30 sections in each sample. Although JRC values varied with the location of the section, the average JRC values from any three sections provides an adequate representation of the average JRC value for the entire surface well. Direct shear tests were performed on nine joints reproduced using molds of real joints in samples of gypsum. The peak friction angles (${\phi}_p$) showed a linear relationship with the average JRC values, yielding the following relationship: ${\phi}_p=41.037+1.046JRC$. However, the shear strengths measured by direct shear tests differed from those calculated using Barton's criterion. The relationship between calculated from direct shear tests and JRC measured from joint surfaces is defined as $JRC_R=f{\cdot}JRC$, and the correction coefficient f is was calculated as $f=3.15JRC^{-0.5}$, as calculated by regression. A modified shear-strength criterion, is proposed using the correction coefficient, ${\tau}={\sigma}_n{\cdot}tan(3.15JRC^{0.5}{\bullet}{\log}_{10}\frac{JCS}{{\sigma}_n}+{\phi}_b)$. This criterion may be effective in calculating the shear strength of moderately weathered rock joints and highly weathered rock joints with low strength and ductile behavior.

A Study on the Change of Tensile Force of Friction Type Anchor under Shear Deformation of Ground (지반의 전단변형에 따른 마찰형 앵커의 긴장력 변화에 대한 연구)

  • You, Min-Ku;Kwon, O-Il;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.13-25
    • /
    • 2018
  • When deformation occurs on slope reinforced with anchor, shear stress and bending stress are applied on the shear surface along the slip surface and increase of the shear deformation causes the tension force variation of the anchor. In this study, shear test was performed by measuring the tension force of the anchor by inducing shear deformation in vertical direction of the anchor using a large-scale direct shear test equipment in order to confirm the tension force variation of the anchor induced by shear deformation. The shear test was performed for 8 conditions which were classified according to the anchor reinforcement, separation distance (1D, 2D, 4D) from the shear surface to bonded part and the lateral-pressure condition (0.1 MPa, 0.2 MPa) of adjacent ground. As a result of the shear test, it was found that the separation distance and the lateral-pressure condition affect the shear force of the ground reinforced by anchor and the tension force of the anchor, and experimentally verified that the shear force variation is related to axial force variation of the anchor head and tip. Therefore, it was confirmed that the behavior of the bonded part induced by the shear deformation can be indirectly predicted by analyzing the tendency of the tension force variation of the anchor head.

A Study on Distinct Element Modelling of Dilatant Rock Joints (팽창성 암석절리의 개별요소 모델링에 관한 연구)

  • 장석부;문현구
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • The behavior of a jointed rock mass depends mainly on the geometrical and mechanical properties of joints. The failure mode of a rock mass and kinematics of rock blocks are governed by the orientation, spacing, and persistence of joints. The mechanical properties such as dilation angle, shear strength, maximum closure, strength of asperities and friction coeffiient play important roles on the stability and deformation of the rock mass. The normal and shear behaviour of a joint are coupled due to dilation, and the joint deformation depends also on the boundary conditions such as stiffness conditons. In this paper, the joint constitutive law including the dilatant behaviour of a joint is numerically modelled using the edge-to-edge contact logic in distinct element method. Also, presented is the method to quantify the input parameters used in the joint law. The results from uniaxial compression and direct shear tests using the numeical model of the single joint were compared to the analytic results from them. The boundary effect on the behaviour of a joint is verified by comparing the results of direct shear test under constant stress boundary condition with those under constant stiffness boundary condition. The numerical model developed is applied to a complex jointed rock mass to examine its performance and to evaluate the effect of joint dilation on tunnel stability.

  • PDF

Numerical Analysis using Direct Shear Test Model for the Behavior of Buried Pipeline by the Fault Motion (단층활동시 매설 파이프라인의 거동에 대한 직접진단 시험모델 수치해석)

  • 장신남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.6
    • /
    • pp.64-74
    • /
    • 1999
  • The frequency of earthquake occurrence tends to increase in Korea. Therefore, the stability of pipeline, such as watersupply pipe, gas pipe, and oil pipe etc. across fault zones in Gyoung-sang landmass is very important, expecially , in metropolitan area. There were some examples of the construction of buried pipeline across fault zones in Korea. the interactiion between the buried pipeline across fault zones and the ground is considered. As well, in the interfaces of them, the direct shear numerical analysis model including elasto-plastic joint element is assumed that the retained dilatancy theory in them, otherwise. Also, the other elements are modeled the ground is nonlinear elastic coutinuaus beam, respectively. In this study, the maximum shear force point exist inside retaine zone(anchored zone) during shwar (as fault sliding), and the distribution of pipeline's behavior is all alike them of pipeline buried in ladnsliding grounds. Since the pipeline is not continuous beam but jointed by steel-pipe segments , practically, on acting of a large bending moment or a shear force, then, those are may be unstable. The reaearch on this point may be new approach.

  • PDF

Development of a New Direct Shear Apparatus Considering the Boundary Conditions of Rock Joints (암반의 경계조건을 고려한 절리면 직접전단시험기 개발)

  • 이영휘;김용준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.147-157
    • /
    • 2003
  • The characteristics of a rock joint which influence the stability of rock mass structures such as cut slopes and tunnels are largely controlled by the conditions of the rock joint as well as its boundary conditions. The conditions of rock joints comprise asperity strength, roughness, and filling materials. Boundary conditions can be represented by assuming that the deformability(or stiffness) of the rock mass surrounding the joints is modelled by a spring with stiffness. A new direct shear apparatus was developed in this study, which adapts a servo control system using PID algorithm. This apparatus can be used to investigate the various aspects of shear characteristics of the rock joints at conditions of constant normal stress and constant normal stiffness and so on. The test results for saw-cut teeth joints show that shear strength should be evaluated by considering its specific boundary conditions far the design of tunnels and cut slopes.

Degradation Characteristics of Strength and Stiffness due to Soils (흙의 종류에 따른 강도와 강성저하 특성)

  • Song, Byung-Woong;Kim, Hong-Taek;Yasuhara, Kazuya;Murakami, Satosh;Park, Inn-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.253-260
    • /
    • 2004
  • Many scholars and researchers has been studied for many kinds of soil characteristics, but a lot of part are still unsolved. Cyclic load-induced decreasing characteristics of strength and stiffness of soils are also well not known among them. To know that, the characteristics of five kinds of soils; clay, plastic and non-plastic silt, sand, and a weathered soil are compared with dividing two types as plastic or non-plastic soils through direct simple shear(DSS) test. From the results of DSS test, it is known that decreasing characteristics of strength and stiffness are different according to soil types. The strength of plastic and non-plastic soils increases with increment of plasticity index and decrement of volume decrease potential, respectively. And the decreasing stiffness of plastic and non-plastic soils increases with decrement of plasticity index and increment of volume decrease potential, respectively.

  • PDF