• Title/Summary/Keyword: Direct-Driven

Search Result 267, Processing Time 0.025 seconds

Analysis on Combustion Characteristics of CRDi Single-cylinder Diesel Engine with Direct Needle-driven Piezo Injector (직접구동 피에조 인젝터의 CRDi 단기통 디젤엔진 연소 특성 분석)

  • Chung, Myungchul;Sung, Gisu;Kim, Sangmyung;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.108-115
    • /
    • 2014
  • In this study, experimental approaching method was applied under and single-cylinder engine to research the performance of direct needle-driven piezo injector (DPI) for CR direct-injection. As key-point factor of this DPI that relies on direct-acting operating of injector needle, unlike conventional hydraulic-servo, its nozzle needle can be directly driven by piezo actuator. Thus, effect of direct-acting injection of DPI on diesel combustion and emission characteristics was investigated under common-rail single-cylinder direct-injection engine, equipped with three different driving mechanism, including indirect-acting solenoid, piezo and DPI system. As main results, it found that a direct-acting piezo injector has higher of IMEP. And it has higher heat release rate during premixed combustion and mixing controlled combustion phase due to its higher heat release, even though nitrogen oxide (NOx) formations were increased slightly.

Optimal Design of Direct-Driven Wind Generator Using Mesh Adaptive Direct Search(MADS) (MADS를 이용한 직접구동형 풍력발전기 최적설계)

  • Park, Ji-Seong;An, Young-Jun;Lee, Cheol-Gyun;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.48-57
    • /
    • 2009
  • This paper presents optimal design of direct-driven PM wind generator using MADS (Mesh Adaptive Direct Search). Optimal design of the direct-driven PM Wind Generator, combined with MADS and FEM (Finite Element Method), has been performed to maximize the Annual Energy Production (AEP) over the whole wind speed characterized by the statistical model of the wind speed distribution. In particular, the newly applied MADS contributes to reducing the computation time when compared with Genetic Algorithm (GA) implemented with the parallel computing method.

Comparison on Spray Characteristics of Diesel HEV Injectors for 3-different Driving Type (SI, PI, DPI) (3개 구동방식(SI, PI, DPI)별 디젤HEV용 인젝터의 분무 특성 비교)

  • Chung, M.C.;Sung, G.S.;Kim, S.M.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • Performance of DI diesel engine with high-pressure fuel injection equipment is directly related to its emission characteristics and fuel consumption. So, the electro-hydraulic injector for the common-rail injection system should be designed to meet the precise high fuel delivery control capability. Currently, most high pressure injector in use has a needle driven by the solenoid coil energy or the piezo actuator controlled by charge-discharge of output pulse current. In this study, macroscopic spray approaching method was applied under constant volume chamber to research the performance of three different injectors : solenoid, indirect-acting piezo and direct-acting piezo type for CR direct-injection. LED back illumination for Mie scattering was applied on the liquid spray visible of direct-acting piezo injector, including hydraulic-servo type solenoid and piezo-driven injectors. As main results, we found that a direct-acting piezo injector had better a spray tip penetration than hydraulic-servo injectors in spray visualization.

A Technical Trends of Direct-Driven Permanent Magnet Generator for Wind Turbine (직접구동 영구자석 풍력발전기 기술동향)

  • Lee, Jung-Il;Kwon, Jung-Lock;Kim, Ki-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.97-100
    • /
    • 2003
  • Recently, the generators for wind turbine have been manufactured with high output power such like MW class machine in order to reduce the generation cost and to increase the energy efficiency. At the same time, direct-driven generators for wind turbine have been developed and researched, which have easy maintenance and high efficiency by simplification the system through the removal of the gear box. In this paper, at first, the advantage and disadvantage between the direct-driven generator system and conventional indirect-driven system are compared. And secondly, the permanent magnet generator (PMG) for wind turbine has been rapidly improved to cope with the recent trend which requires the high power output Per one machine and the convenience for maintenance, and the PMG is adequate for direct driven system and suitable for high-efficiency and light weight. So, the characteristics and technical trend of the PMG for wind turbine is examined. At last, a suitable technical trend for development of the permanent magnet generator for wind turbine is proposed.

  • PDF

A Study on Optimal Design of Direct Needle-driven Piezo Injector for Accomplishing Injection Pressure of 1800 bar (분사압력 1800 bar 실현을 위한 직접 니들구동방식 피에조 인젝터 설계 최적화 연구)

  • Han, Sangik;Kim, Juhwan;Ji, Hyungsun;Go, Junchae;Kim, Jinsu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.121-129
    • /
    • 2016
  • The advantages of the common rail fuel injection system architecture have been recognized since the development of the diesel engine. In common rail systems, a high-pressure pump stores a reservoir of fuel at high pressure up to and above 2000 bar. And solenoid or piezoelectric valves make possible fine electronic control over the fuel injection time and quantity, and the higher pressure that the common rail technology makes available provides better fuel atomization. In this study, the direct needle-driven piezo injector was investigated for accomplishing injection pressure of 1800 bar by optimal design by simplification of component and changing number of springs and plates of DPI. It was found that a direct needle-driven piezo injection system features the prototype DPI for passenger vehicle to operate at 1800 bar of injection pressure.

Direct Share: Photo Management System Based on Round-robin Concept-driven User Preference Feedback

  • Song, Tae-Houn;Jeong, Soon-Mook;Kim, Hyung-Min;Kwon, Key-Ho;Jeon, Jae-Wook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.7
    • /
    • pp.1346-1367
    • /
    • 2011
  • As the size of camera modules is decreasing and as the computing performance of portable devices is improving, taking photos has become a part of daily life. However, existing photo management programs and products that manage such photos still require extensive user effort to facilitate the sharing and browsing of images. It is especially difficult for novice users to manage and share photos. In this paper, we develop a round-robin concept-driven user preference feedback mechanism for achieving direct photo sharing, instant display, and easy management using optimized user controls and user preference-driven classification. Compared with commercial photo management systems, our proposed solution provides new features: optimized user controls, direct sharing and instant display, and user preference feedback driven classification. These new features boost the round-robin concept-driven user preference feedback. This paper proposes a photo finder that automatically searches for photos in storage spaces or cameras. The proposed photo finder relies on user preference feedback to share photos by leveraging user preferences, and the round-robin connection transmits photos to the family's digital photo frame or web album by arbiter. The proposed method saves time and spares users the effort required for photo management. Moreover, this method does not merely direct photo sharing and simple photo management, but it also increases the satisfaction level of users viewing the photos.

A Study on the Gain Scheduling Speed Controller of Permanent Magnet Synchronous Generators for MW-Class Direct-Driven Wind Turbine Systems (MW급 직접구동형 풍력터빈시스템을 위한 영구자석 동기발전기의 게인 스케쥴링 속도제어기에 대한 연구)

  • Choi, Young-Sik;Yu, Dong-Young;Choi, Han-Ho;Jung, Jin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.48-59
    • /
    • 2011
  • This paper presents a new gain scheduling speed controller of permanent magnet synchronous generators(PMSG) for MW-class direct-driven wind turbine systems. The proposed gain scheduling speed controller performs the speed tracking at more than one operating point, and the first-order torque observer estimates the turbine torque which is needed to precisely control the speed of PMSG. The proposed speed controller verifies that the PMSG can successfully follow the reference speed which is determined via the maximum power point tracking(MPPT) control and pitch control under turbulent wind conditions. The proposed speed control algorithm is simulated using Simulink and its performance is confirmed through comparison with the results by PI control method.

Analysis of Macroscopic Spray Characteristics of Diesel Injectors with Three Different Needle Driving Type in Common Rail Direct Injection System (3가지 니들구동방식별 CRDi 디젤엔진용 고압 인젝터의 거시적 분무특성 비교해석)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.351-358
    • /
    • 2006
  • The capability of high pressure injection with small fuel quantify at all engine operating conditions is one of the main feature in common rail fuel injection system, which is used in small and light-duty Diesel engine. The key parameter for the better atomized fuel sprays and multiple injections of this common rail fuel injection control, that can be freely selected irrespective of the engine speed and load is the mechanism controlling the needle energizing and movement in high pressure Diesel injector. In the electro-hydraulic injector, the injection nozzle is being opened and closed by movement of the injector's needle which is balanced by pressure between the nozzle seat and the needle control chamber. This study describes the macroscopic spray structure characteristics of the common rail Diesel injectors with different electric driving method i.e. the solenoid-driven and piezo-driven type. The macroscopic spray characteristics such as spray tip speed. spray tip penetration and spray cone angle were investigated by the high speed spray, which is measured by the back diffusion light illumination method with optical system for the high speed temporal photography in a constant volume chamber pressurized by nitrogen gas. As the results, the prototype piezo-driven injector system was designed and fabricated for the first time in domestic case and the effect of injector's needle response driven by different drive type was compared between the solenoid and piezo-driven injector It was found therefore. that the piezo-driven injector showed faster needle response and had better needle control capability by altering the electric input value than the solenoid-driven injector.

A Study on the Analysis on the Direct-Driven High Power Permanent Magnet Generator for Wind Turbine

  • Kim, Ki-Chan;Ihm, Hyung-Bin;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.88-95
    • /
    • 2008
  • In the paper, the permanent magnet synchronous generator of 1.5[MW] output power which is driven directly without gear system is designed by conventional magnetic equivalent circuit method and analyzed by finite element method. We analyzed the characteristics of generator like no load, rated load, short circuit condition and demagnetization of permanent magnet in order to verify the design results by magnetic circuit method. The last, the analysis results of two kinds of rotor types are compared with each other. Especially the THD(total harmonic distortion) of output voltage is examined for the comparison.

An Asynchronous-Driven Node.js Based Intermediary-free Direct Deal Distribution Platform Converged with Cloud Service

  • Lee, SongYeon;Paik, JongHo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4212-4226
    • /
    • 2019
  • In this paper, a design and implementation for direct deal distribution platform is proposed to bypass the complex traditional distribution structure of agricultural market, as one of the fields where distribution patterns have changed. In the case of domestic agricultural distribution, demand and supply are unstable since the sales market is excessively concentrated in the designated wholesale market. Besides sales must go through multiple stages of distribution leading to problems in freshness and stability of agricultural products and downward pressure on profit margins for producers. To solve the above mentioned issues, we propose a cloud service convergence direct deal distribution platform based on asynchronous-driven Node.js. The proposed platform can facilitate a variety of direct trading functions and also access to visualization information related to agricultural products, which may increase user confidence at an intermediary-free direct transactions platform. First, we describe the requirements of intermediary-free direct transactions of agricultural products and transaction entities. Next the database structure and transaction functions are designed and then implemented according to those requirements. Finally, an API based cloud convergence service structure is designed to provide the analyzed information to ensure a trustworthy system.