• 제목/요약/키워드: Direct-Chill casting

검색결과 6건 처리시간 0.019초

수직 연속주조 공정으로 제조된 Al-8Zn-2Mg-2Cu 빌렛의 표면 결함 형성에 미치는 주조 온도와 주조 속도의 영향 (Effect of Casting Temperature and Speed on Formation of Surface Defect in Al-8Zn-2Mg-2Cu Billets Fabricated by Direct-Chill Casting Process)

  • 이윤호;김용유;이상화;김민석;어광준;이동근
    • 한국주조공학회지
    • /
    • 제41권3호
    • /
    • pp.241-251
    • /
    • 2021
  • 7000계 알루미늄 합금은 다른 Al 합금에 비해 강도가 우수하여 주목을 받고있으며, 7000계 알루미늄 빌렛은 일반적으로 Direct-Chill (DC) 주조 공정을 통해 제조된다. DC 주조 공정으로 제조된 알루미늄 빌렛의 표면 결함은 주로 Exudation과 Meniscus freezing 현상과 관련이 있으며, 이는 합금 성분, 주조 속도 및 주조 온도의 영향을 받는다. 특히, 7000계 알루미늄 합금은 응고 과정에서 응고 온도 범위가 넓어 주조 결함이 발생하기 쉽다. 본 연구에서는 DC 주조 공정에 의해 제조된 Al-8Zn-2Mg-2Cu 합금 빌렛에 대한 표면 결함 변화에 대하여 조사하였다. 빌렛의 표면은 "Wavy" 또는 "Dot" 표면으로 관찰되었다. Wavy 표면은 낮은 주조 속도(200mm/min)와 온도(655℃)에서 Meniscus freezing 현상에 의해 형성되었으며, Concave 영역에서 Meniscus freezing 현상으로 인한 조성작 과냉으로 인해 미세한 수지상 조직이 관찰되었다. 반면에, 주조 온도가 높은 조건(675℃)에서는 Dot 표면이 기공 형성에 의해 형성되었으며, 높은 주조 속도(230mm/min)에서 제조된 Dot 표면을 갖는 빌렛에서는 높은 금속 수두압에 의해 Exudation 층이 형성되었다. Exudation 층의 Dot 영역과 Smooth 영역은 각각 미세한 수지상 형태와 주상정 형태의 조직이 관찰되었으며 이는 Dot 영역에서 가스 기공의 형성에 의한 결과이다.

7175 알루미늄합금 형단조재의 미세조직 변화와 기계적 성질 (Microstructural Changes and Mechanical Properties of 7175 Aluminum Alloy Die Forgings)

  • 이인기;유재선;강성수;이오연
    • 한국재료학회지
    • /
    • 제14권3호
    • /
    • pp.168-174
    • /
    • 2004
  • The aim of this study is to investigate the effect of process conditions on the microstructual changes and mechanical properties of large 7175 aluminum die forgings. The cast billets of 370 and 720 mm in diameter were homogenized and die forged after direct chill casting. The size and volume fraction of second phase particles in 720 mm billet were larger than those of 370 mm billet. The interdendritic sites containing the second phase particles was considered to be a crack initiation region in the process of cold upsetting. The tensile and yield strength of die forged specimens of 720 mm billet in the direction of Land L T were higher than those of 370 mm billet. However, the tensile strength of these specimens were 5 to 10% lower than that of American military specification. The plane strain fracture toughness of die forged specimens of 370 mm cast billet showed almost the same level of 720 mm billet, which was die forged after free forging.

7175Al 대형 단조재의 미세조직과 파괴인성 (Microstructure and Fracture Toughness of 7175Al Heavy Forgings)

  • 이오연;장성환
    • 열처리공학회지
    • /
    • 제14권2호
    • /
    • pp.89-95
    • /
    • 2001
  • The 7175Al alloy is particularly interesting for its high strength and sufficient ductility, fracture toughness and corrosion resistance. Currently vigorous efforts have been made to develop large rockets usable for various purposes in the space. This has created the demand of big size of 7175Al billet which would be applied to heavy forgings. The aim of this study is to investigate the quality level of big billet and the effect of billet size on the mechanical properties of large 7175Al ring roll forgings. The billets range from 370 mm to 720 mm in diameter were homogenized and forged after direct chill casting. The size and volume fraction of second phase particles In ${\Phi}720$ mm billet are larger than those of ${\Phi}370$ mm billet, and its ductility is lower for the condition of homogenization and T6 treatment. The Cu-rich phases formed in interdendritic sites are considered to provide the preferential crack path during cold upsetting. The fracture toughness of ring roll forgings which are made by ${\Phi}370$ mm billet is higher than those of ${\Phi}720$ mm billet.

  • PDF

7175Al 링롤단조재의 미세조직과 기계적 성질에 미치는 공정조건의 영향 (Effect of Process Conditions on the Microstructure and Mechanical Properties of 7175Al Ring Roll Forgings)

  • 이인기;강락경;이오연
    • 열처리공학회지
    • /
    • 제17권1호
    • /
    • pp.10-16
    • /
    • 2004
  • The aim of this study is to investigate the process conditions on the microstructual changes and mechanical properties of large 7175 aluminum ring roll forgings. The billets range from 370 mm to 720 mm in diameter were homogenized and ring roll forged after direct chill casting. The tensile properties of ring roll forged specimen manufactured with ${\Phi}370mm$ billets were superior to those of ${\Phi}720mm$ billets under $T_6$ condition. Also, these properties showed better than those of military specification under $T_{74}$ treatment. The impact value of ring roll forged specimen under $T_{74}$ treatment increased up to 20% than that of $T_6$ condition. The fracture toughness of ring roll forged specimen manufactured with ${\Phi}370mm$ cast billet showed nearly same level of ${\Phi}720mm$ billet which was processed using MF or Cog free forging followed by ring roll forging.

Microstructures and Mechanical Properties of Extruded Al 7050 Billet and Ring Forged One with Large Scale

  • Bae, Dong-Su;Joo, Kyung-Hwan;Lee, Jin-Kyung;Lee, Sang-Pill;Chang, Chang-Beom;Hong, Sung-Seop;Park, Tae-Won
    • 동력기계공학회지
    • /
    • 제20권6호
    • /
    • pp.40-45
    • /
    • 2016
  • The manufacturing process of large scaled Al 7050 alloy is difficult for the occurrence of solidification crack during casting. The aims of this study are the evaluations of microstructure and mechanical properties of extruded Al 7050 billet and ring forged one with large scale. Large scaled Al 7050 billet was casted by direct-chill casting process. The extruded and ring forged specimens were prepared from the casted ingot after residual stress relief and homogenization heat treatment, respectively. Microstructures, hardness and tensile test of the surface, middle and center part of each specimen were performed at room temperature. Sheared and elongated type grains were observed at the edge parts of surface and center area and its aspect ratios of grains were low and similar as 0.21 while that of middle area was closed to 0.92 value in ring forged Al 7050 alloy. The mechanical properties of extruded Al 7050 alloy were superior than those of ring forged one. The hardness values of surface and center part were slightly higher than that of middle part in ring forged Al 7050 alloy.

고강도 7175Al 형단조재의 기계적 성질에 미치는 제조공정의 영향 (Effect of Fabrication Process on the Mechanical Properties of High Strength 7175Al Die Forgings)

  • 이인기;강성수;이오연
    • 한국재료학회지
    • /
    • 제13권12호
    • /
    • pp.812-818
    • /
    • 2003
  • The aim of this study is to investigate the fabrication processes on the microstructual changes and mechanical properties of large 7175 aluminum die forgings. The billets range from 370 to 720 mm in diameter were homogenized and hot forged after direct chill casting. The strength and elongation of the homogenized cast billets were revealed nearly same level independent of the billet diameter. However, these properties of ø370 mm cast billet were superior to those of $\Pie720$ mm billet under$ T_{6}$ / condition. The tensile strength of die forged specimens under $T_{6}$ condition increased up to 20% than that of solution treatment, however, the elongation was reduced to 50%. The fracture toughness of die forged specimens under $T_{6}$ condition was 35.6∼39.0 MPa$.$$m^{1}$2 irrespective of the billet size and free forging processes, but this property increased up to 10% by$V_{74}$ treatment. The fracture toughness of die forged specimen manufactured with ø370 mm cast billet showed nearly same level of ø720 mm billet which was processed using MF or Cog free forging followed by die forging.