• 제목/요약/키워드: Direct strength analysis

검색결과 389건 처리시간 0.027초

Application of Alkaliphilic Biofilm-Forming Bacteria to Improve Compressive Strength of Cement-Sand Mortar

  • Park, Sung-Jin;Chun, Woo-Young;Kim, Wha-Jung;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.385-389
    • /
    • 2012
  • The application of microorganisms in the field of construction material is rapidly increasing worldwide; however, almost all studies that were investigated were bacterial sources with mineral-producing activity and not with organic substances. The difference in the efficiency of using bacteria as an organic agent is that it could improve the durability of cement material. This study aimed to assess the use of biofilm-forming microorganisms as binding agents to increase the compressive strength of cement-sand material. We isolated 13 alkaliphilic biofilmforming bacteria (ABB) from a cement tetrapod block in the West Sea, Korea. Using 16S RNA sequence analysis, the ABB were partially identified as Bacillus algicola KNUC501 and Exiguobacterium marinum KNUC513. KNUC513 was selected for further study following analysis of pH and biofilm formation. Cement-sand mortar cubes containing KNUC513 exhibited greater compressive strength than mineral-forming bacteria (Sporosarcina pasteurii and Arthrobacter crystallopoietes KNUC403). To determine the biofilm effect, Dnase I was used to suppress the biofilm formation of KNUC513. Field emission scanning electron microscopy image revealed the direct involvement of organic-inorganic substance in cement-sand mortar.

관통구를 갖는 판구조물의 강도평가 방법에 관한 연구 (A Study on the Strength Evaluation Method of Plate Structures with Penetration-holes)

  • 김을년;장준태
    • 대한조선학회논문집
    • /
    • 제54권6호
    • /
    • pp.476-484
    • /
    • 2017
  • The purpose of this paper is to verify the structural integrity of a region with numerous penetration-holes in offshore structures such as semi-submersible rig and FPSO. In order to effectively check the yielding and buckling strength of plate members with penetration-holes, a screening analysis program was developed with the FE analysis tool to generate fine meshed model using the theoretical and analysis methods. When a hole is appeared in the plate structure members, the flow of stress is altered such that concentrations of stress form near the hole. Stress concentrations are of concern during both preliminary and detail design and need to be addressed from the perspectives of strength. To configure the geometrical shape, very fine meshed FE analysis is needed as the most accurate method. However, this method is practically impossible to apply for the strength verifications for all perforated plates. In this paper, screening analysis method was introduced to reduce analysis tasks prior to detailed FE analysis. This method is applied to not only the peak stress calculation combined stress concentration factor with nominal stress but also nominal equivalent stress calculation considering cutout effects. The areas investigated by very fine meshed analysis were to be chosen through screening analysis without any reinforcements for penetration-holes. If screening analysis results did not satisfy the acceptance criteria, direct FE analysis method as the 2nd step approach were applied with one of the coarse meshed model considering hole or with the very fine meshed model considering the hole shape and size. In order to effectively perform the local fine meshed analysis, automatic model generating program was developed based on the MSC/PATRAN which is pre-post FE analysis program. Buckling strength was also evaluated by Common Structure Rule (CSR) adopted by IACS as the stress obtained from very fine meshed FE analysis. Due to development of the screening analysis program and automatic FE modeling program, it was able to reduce the design periods and structural analysis costs.

Cu-Cu2O계 공융액상을 활용한 Cu/AlN 직접접합 (Direct Bonding of Cu/AlN using Cu-Cu2O Eutectic Liquid)

  • 홍준성;이정훈;오유나;조광준;류도형;오승탁;현창용
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.114-119
    • /
    • 2013
  • In the DBC (direct bonding of copper) process the oxygen partial pressure surrounding the AlN/Cu bonding pairs has been controlled by Ar gas mixed with oxygen. However, the direct bonding of Cu with sound interface and good adhesion strength is complicated process due to the difficulty in the exact control of oxygen partial pressure by using Ar gas. In this study, we have utilized the in-situ equilibrium established during the reaction of $2CuO{\rightarrow}Cu_2O$ + 1/2 $O_2$ by placing powder bed of CuO or $Cu_2O$ around the Cu/AlN bonding pair at $1065{\sim}1085^{\circ}C$. The adhesion strength was relatively better in case of using CuO powder than when $Cu_2O$ powder was used. Microstructural analysis by optical microscopy and XRD revealed that the interface of bonding pair was composed of $Cu_2O$, Cu and small amount of CuO phase. Thus, it is explained that the good adhesion between Cu and AlN is attributed to the wetting of eutectic liquid formed by reaction of Cu and $Cu_2O$.

입방체경화재료의 삼차원거동 및 강도특성 (Three-dimensional Behavior and Strength Characteristics of Cubical Hal-dening Materials.)

  • 강병선
    • 한국지반공학회지:지반
    • /
    • 제5권3호
    • /
    • pp.19-28
    • /
    • 1989
  • 본문은 전단과정에서 경화되는 모래와 같은 재료의 구성식을 연구하기 위하여 그 기초실험으로서 이미 경화된 콘크리트를 대상으로 3주응력을 독립적으로 제어할 수 있는 입방체삼축추축실험기를 통해 여러가지 응력경로 실험을 실시한 것이다. 실험으로서는 HC, CTC, TC, TE, SS 등 5종이고 그 들의 응력-변형률관계와 강도특성을 8면체면에서 고찰한 것이다. 이들을 통한 주요 결론은 다음과 같다. 1. 경화재료에 대한 전단강도의 크기는 CTC, TC, SS, TE의 순서이다. 2. 8면체전단강도는 응력경로에 의존하고 3. 또한 등방응력이 클수록 좋다. 4. 8면체면에서 극한포락선은 원추형상이다. 5. 마찰성재료인 경화재료에 대해서는 인장강도의 영향을 고려해야 한다.

  • PDF

조립질 입자크기가 전단강도에 미치는 영향 (A Study on Shear Strength of Granular Due to The Various Particle Size)

  • 이승호;서현길
    • 한국지반환경공학회 논문집
    • /
    • 제13권4호
    • /
    • pp.71-76
    • /
    • 2012
  • 흙의 전단강도는 흙 속의 임의의 면을 따라 발생하는 파괴와 활동에 저항하는 힘으로 흙의 공학적 특성 중에 가장 중요한 요소 중의 하나이다. 전단강도는 앝은 기초나 말뚝의 지지력 해석방법과 같은 기초공학의 문제나 댐 및 절 성토 후의 사면안정, 그리고 토류 구조물의 횡토압과 같은 흙의 안정 문제 해석 등에 이용된다. 본 연구는 화강풍화토에서 점성토 성분을 제거하고 건조시킨 후, 2 00mm(10번체)와 0 85mm(20번체), 0 475mm(40번체)로 분류한 시료로 직접전단시험기를 이용하여 전단강도 변화를 파악하고자 하였으며, 또한 산호모래를 선정하여 비교 시험을 실시하였다. 따라서 본 연구는 입자의 크기에 따른 전단강도 특성을 비교한 연구에 도움이 될 것으로 판단된다.

Modal strength reduction factors for seismic design of plane steel frames

  • Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • 제2권1호
    • /
    • pp.65-88
    • /
    • 2011
  • A new method for the seismic design of plane steel moment resisting frames is developed. This method determines the design base shear of a plane steel frame through modal synthesis and spectrum analysis utilizing different values of the strength reduction (behavior) factor for the modes considered instead of a single common value of that factor for all these modes as it is the case with current seismic codes. The values of these modal strength reduction factors are derived with the aid of a) design equations that provide equivalent linear modal damping ratios for steel moment resisting frames as functions of period, allowable interstorey drift and damage levels and b) the damping reduction factor that modifies elastic acceleration spectra for high levels of damping. Thus, a new performance-based design method is established. The direct dependence of the modal strength reduction factor on desired interstorey drift and damage levels permits the control of deformations without their determination and secures that deformations will not exceed these levels. By means of certain seismic design examples presented herein, it is demonstrated that the use of different values for the strength reduction factor per mode instead of a single common value for all modes, leads to more accurate results in a more rational way than the code-based ones.

Elastic distortional buckling of cold-formed steel Z-Beams with stiffened holes using reduced thickness

  • Nasam S. Khater;Mahmoud H. El-Boghdadi;Nashwa M. Yossef
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.225-241
    • /
    • 2024
  • For several reasons, cold-formed steel (CFS) beams are often manufactured with holes. Nevertheless, because of holes, the reduction in the web area causes a decrease in the bending strength. Edge stiffeners are presently added around the holes to improve the bending strength of flexural members. Therefore, this research studies CFSZ-beams with stiffened holes and investigates how edge stiffener affects bending strength and failure modes. Nonlinear analysis was carried out using ABAQUS software and the developed finite element (FE) model was verified against tests from previous studies. Using the verified FE model, a parametric study of 104 FE models was conducted to investigate the influence of key parameters on bending strength of Z- sections. The results indicated that the effect of holes is less noticeable in very thin Z-sections. Moreover, adding edge stiffeners around the holes improves the flexural capacity of Z-beams and sometimes restores the original bending capacity. Because the computational techniques used to solve the CFS buckling mode with stiffened holes are still unclear, a numerical method using constrained and unconstrained finite strip method (CUFSM) software was proposed to predict the elastic distortional buckling moment for a wide variety of CFSZ-sections with stiffened holes. A numerical method with two procedures was applied and validated. Upon comparison, the numerical method accurately predicted the distortional buckling moment of CFS Z-sections with stiffened holes.

전동렌치 전기에너지를 이용한 토크쉬어볼트의 체결축력 검사기법 개발 (Development of the Method for Inspecting the Clamping Force of Torque Shear Bolts Using the Electricity energy of Electric torque wrench)

  • 이현주;나환선;김강식;김강석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권6호
    • /
    • pp.162-170
    • /
    • 2010
  • 토크쉬어볼트의 토크계수는 환경요인에 의해 영향을 받는다. 습기, 녹, 시공중의 작업성 등. 토크쉬어볼트의 토크계수의 변동에 기인하여 볼트에 도입된 축력을 예측하는 매우 어렵다. 이런 이유로 시공중인 볼트 축력을 측정하고, 체결력을 검증하는 것은 필수적이다. 이 연구에서, 볼트에 도입된 하중을 확인하기 위해 시작품 제작이 계획되었다. 시작품의 알고리즘은 토크쉬어 전동렌치에서 얻은 전기에너지와 유압축력기에서 얻은 축력과의 상관관계를 구성한 것이다. 직접축력을 계측하는 회귀분석식은 미니탭 프로그램을 이용한 통계학적인 분석방법에서 구한 것이다. 이 시작품은 상용 토크렌치에 견줄만한 인장력을 평가하는 신뢰성이 있는 도구라고 판단된다.

점토-플라이 애시 혼합물의 지반공학적 특성 (Geotechnical Properties of Clay-Fly Ash Mixtures)

  • 권무남;정성욱;이상호;구정민;김현기
    • 한국농공학회논문집
    • /
    • 제46권5호
    • /
    • pp.99-106
    • /
    • 2004
  • Although fly ash has possesses viable engineering properties, an overwhelming majority of fly ash from coal combustion is still placed in storage or disposal sites. This study was undertaken to investigate the physical and mechanical properties of clay-fly ash mixture and to furnish engineering data when fly ash utilized as engineering materials. This paper includes geotechnical properties of fly ash, clay-fly ash mixtures and results of compaction test, unconfined strength test, direct shear test, leaching test and stability analysis of clay-fly ash bank slope. If proper amount of fly ash was put in clay, the clay-fly ash mixture has an increase of unconfined strength and stability of bank slope.

유한요소법에 의한 횡강도부재의 최소중량설계 (Minimum Weiht Design of Transverse Strength Member by Using Finite Element Method)

  • 나승수;민계식;엄항섭;신동희
    • 대한조선학회지
    • /
    • 제22권3호
    • /
    • pp.27-37
    • /
    • 1985
  • The optimum design of the transverse strength member was carried out with respect to the minimum hull weight taken account of the 2-dimensional analysis by using Finite Element Method. The optimum sizes of the member such as web height, web thickness, lower flange breadth, lower flange thickness, radii, were calculated by using Hooke and Jeeves direct search method. The optimum structure satisfies requirements to allowable bending and shear stresses in each strength member. The optimum design results were compared with the practical ship design. The optimum design saves the hull weight than that of practical design amounts to 9.6% of that.

  • PDF