• Title/Summary/Keyword: Direct reduction

Search Result 1,361, Processing Time 0.029 seconds

Preparation and Characterization of Palladium Nanoparticles Supported on Nickel Hexacyanoferrate for Fuel Cell Application

  • Choi, Kwang-Hyun;Shokouhimehr, Mohammadreza;Kang, Yun Sik;Chung, Dong Young;Chung, Young-Hoon;Ahn, Minjeh;Sung, Yung-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1195-1198
    • /
    • 2013
  • Nickel hexacyanoferrate supported palladium nanoparticles (Pd-NiHCF NPs) were synthesized and studied for oxygen reduction reactions in direct methanol fuel cell. The NiHCF support was readily synthesized by a comixing of $Ni(OCOCH_3)_2$ and equimolar $K_3[Fe(CN)_6]$ solution into DI water under rigorous stirring. After the preparation of NiHCF support, Pd NPs were loaded on NiHCF via L-ascorbic acid reduction method at $80^{\circ}C$. Pd-NiHCF NPs were electrochemically active for oxygen reduction reaction in 0.1 M $HClO_4$ solution. X-ray absorption near edge structure analysis was conducted to measure the white line intensity of Pd-NiHCF to verify the OH adsorption. As a comparison, carbon supported Pd NPs exhibited same white line intensity. This study provides a general synthetic approach to easily load Pd NPs on porous coordination polymers such as NiHCF and can provide further light to load Pd based alloy NPs on NiHCF framework.

Effects of Ethanol and Phenobarbital on Hemoglobin Adducts Formation in Rats Exposed to Direct Black 38 (Direct Black 38 염료를 흰쥐에 투여 시 형성되는 헤모글로빈 부가체에 에탄올과 Phenobarbital이 미치는 영향)

  • Kim, Chi-Nyon;Lee, Se-Hoon;Roh, Jae-Hoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.35 no.3
    • /
    • pp.229-235
    • /
    • 2002
  • Objectives : To evaluate the effects on the formation of benzidine-hemoglobin, and benzidine metabolite-hemoglobin adducts, caused by pretreatment with the known xenobiotic metabolism effectors, ethanol and phenobarbital, in rats administered Direct Black 38 dye. Methods : The experimental rats were divided into three groups: a control group, an ethanol group and a phenobarbital group. Rats were pretreated with ethanol (1g/kg) or phenobarbital (80mg/kg) 24 hours prior to the oral administration of Direct Black 38 (0.5mmol/kg), with the control group being administered the same amount of distilled water. Blood samples were obtained from the vena cava of 5 rats from each group prior to, and at 30 min, 3h, 5h, 9h, 12h, 24h, 48h, 72h, 96h, and 144h following the oral administration of Direct Black 38. Directly after sampling the blood was separated into hemoglobin and plasma, with the adducts being converted into aromatic amines by basic hydrolysis. Hydrolyzed benzidiene, monoacetylbenzidine and 4-aminobiphenyl were analyzed by reverse-phase liquid chromatography with an electrochemical detector, The quantitative amount of the metabolites was expressed by the hemoglobin binding index (HBI). Results : In the ethanol group, benzidine-, monoacetylbenzidine-, and 4-aminobiphenyl-HBI were increased to a greater extent than those in the control group. These results were attributed to the ethanol inducing N-hydrgxylation, which is related to the formation of the hemoglobin adduct, In the phenobarbital group, all the HBIs, with the exception of the benzidine-HBI, were increased to a greater extent than those of the control group. These results were attributed to the phenobarbital inducing N-hydroxylation related to the formation of the hemoglobin adduct. The N-acetylation ratio was only increased with the phenobarbital pretreatment due to the lower benzidine-HBI of the phenobarbital group compared to these of the control and ethanol groups. The N-acetylation ratios for all groups were higher than f for the duration of the experimental period. Although the azo reduction was unaffected by the ethanol, it was inhibited by the phenobarbital, The ratio of the benzidine-HBI in the phenobarbital group was lower than those of the ethanol the control groups for the entire experiment. Conclusion : Our results indicate that both ethanol and phenobarbital increase the formation of adducts by the induction of N-hydroxylation, but also induced N-acetylation. Phenobarbital decreased the formation of benzidine-HBI due to the decrease of the azo reduction. These results suggest that the effects or ethanol and phenobarbital need to be considered in the biochemical monitoring of Direct Black 38.

A Study on Evaporation Characteristics and Concentration Distribution of LPG fuel using Light Extinction Method (광흡수법을 이용한 LPG 연료의 증발특성 및 연료 농도 분포에 관한 연구)

  • Kim, D.K.;Cho, G.B.;Oh, S.M.;Choi, K.N.;Jeong, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.708-714
    • /
    • 2001
  • Although LP gas has lots of advantages, there has been limitation in application for automotive engine due to the several disadvantages, such as power decrease, complex fuel supply unit, and back fire etc. However LP gas direct injection engine has possibility to solve the problems above mentioned. LEM(Light Extinction Method) was employed for analysis of spacial and temporal distribution of LP gas which is directly injected into combustion chamber under various pressure and temperature conditions. The results from CVC(Constant Volume Chamber) were compared to those of RICEM(Rapid Induction, Compression and Expansion Machine) which simulate early- and late injection of direct injection engine. LPG fuel spray is affected by temperature and pressure in evaporation characteristics but it is more benefit to direct injection engine in every way such as, fuel distribution, evaporating speed and well wetting reduction.

  • PDF

A High Efficiency Direct Instantaneous Torque Control of SRM based on the Nonlinear Model (비선형 모델기반 SRM의 고효율 직접 순시토크 제어)

  • An, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1047-1054
    • /
    • 2007
  • This paper presents a high efficiency direct instantaneous torque control (DITC) of Switched Reluctance Motor(SRM) based on the nonlinear model. The DITC method can reduce the high inherent torque ripple of SRM drive system, but drive efficiency is somewhat low due to the high current and switching loss during commutations. In order to reduce a torque ripple, a fast torque reference trajectory is selected at every instantaneous rotor position. Based on the nonlinear model of SRM, the developing torque by one phase is fixed and the other phase is regulated for minimum switchings of phase switch and variation of torque. The switching during commutation can be reduced and fast commutation can be obtained in the proposed method. As a result, drive efficiency could be improved as well as torque ripple reduction. The validity of proposed method is verified by computer simulations and comparative experiments.

A Study on the Development of Stoichiometric Direct Injection Gasoline Engine by Homogeneous Charge (균일 혼합기를 이용한 이론 공연비 직접분사 가솔린 엔진 개발에 관한 실험적 연구)

  • 이내현;유철호;최규훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.32-42
    • /
    • 1998
  • Lean burn gasoline engine is recognized as a promising way to meet better fuel economy. Lean burn engine is classified into port injection and direct injection(DI), DI is more active technique for improving fuel economy with ultra-lean operation, Nowadays, port injected lean burn engine has been produced by many Japan maker. Also, DI engine is also possible for production owing to improvement in control technique of spray, flow air fuel ratio. DI engine uses either homogeneous stoichiometric mixture or stratified mixture by controlling injection timing to be early or late respectively. HM(homogeneous mixture) is worse than SM(stratified mixture) in view of ultra-lean operation in partical load and Nox reducion by using EGR control. But, HM has advanteges in cold starting and emission reduction during transient operation, This paper describes experimental variables and bench test results of HM GDI engine.

  • PDF

Robust Trajectory Control of Direct Drive Manipulator based on combining H$\infty$ Controller and Computed Torque Method (구동력 계산법 및 H$\infty$제어를 병용한 직접구동방식 머니퓰레이터의 퀘적제어)

  • Kim, C.K.;Kang, B.S.;Kwak, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.123-129
    • /
    • 1996
  • Computed torque method has been used for precise trajectory control of the robotic system that involves nonlinear dynamics. It is hard to know exact values of robot system parameters, and the robot arm receives umpredictable interference from the working environment. These disturbances, especially in a direct drive robot, are directly transmitted to actuating motor without reduction. Modelling error and distrubance can cause significant errors in a trajectory tracking problem. In this paper, we propose a new controller that $H_{\infty}$controller is conbined to robot system linearized by computed torque. Simula- tions are made for comparing the performance of the proposed controller with that of a nonlinear $H_{\infty}$ controller proposed by Chen and also computed torque method.hod.

  • PDF

Influence of defective sites in Pt/C catalysts on the anode of direct methanol fuel cell and their role in CO poisoning: a first-principles study

  • Kwon, Soonchul;Lee, Seung Geol
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.198-202
    • /
    • 2015
  • Carbon-supported Pt catalyst systems containing defect adsorption sites on the anode of direct methanol fuel cells were investigated, to elucidate the mechanisms of H2 dissociation and carbon monoxide (CO) poisoning. Density functional theory calculations were carried out to determine the effect of defect sites located neighboring to or distant from the Pt catalyst on H2 and CO adsorption properties, based on electronic properties such as adsorption energy and electronic band gap. Interestingly, the presence of neighboring defect sites led to a reduction of H2 dissociation and CO poisoning due to atomic Pt filling the defect sites. At distant sites, H2 dissociation was active on Pt, but CO filled the defect sites to form carbon π-π bonds, thus enhancing the oxidation of the carbon surface. It should be noted that defect sites can cause CO poisoning, thereby deactivating the anode gradually.

The Reduction of Unburned Hydrocarbons on the Direct-Injection Stratified-Charge Combustion Method by Hydrogen Addition (직접분사 성층연소방식에서 수소 첨가에 의한 미연 탄화수소의 저감)

  • 홍명석;김경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.46-57
    • /
    • 1996
  • The direct injection stratified charge(DISC) engine enhances the fuel tolerance and the antiknock tendency. This enhanc3d antiknock tendency allows use of a higher compression ratio which results in higher thermal efficiency. But its actual utilization is prevented by high emission combustion time and wall quenching will be the main causes of increasing unburned hydrocarbons in DISC system. In order to solve this problem, small aount of hydrogen was added to the charging air or injected fuel. The effects of hydrogen addition were examined experimentally by radial fuel injection using a pancake-type constant volume bomb. In case of the hydrogen addition to the charge of air, the combustion the amount of hydrogen. In case of the hydrogen addition to the fuel, the combustion pressure was significantly increased.

  • PDF

Direct Drive PM Motor Design for Next Generation Locomotive (차세대 전동차용 직구동형 영구자석 전동기 설계기술)

  • Kim, Min-Seok;Park, Ji-Seong;Kim, Dae-Kwang;Kim, Jung-Chul;Jung, Sang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1860-1865
    • /
    • 2008
  • The propulsion for locomotive application has changed from the DC motor system to the induction motor system. Although the induction motor system has almost reached the stage of maturity, this system also needs to be changed to the PM motor system for the direct drive without using reduction gear. Thus, the IPMSM(Interior buried Permanent Magnet Synchronous Motor) has been adopted to meet the locomotive driving specification. In this paper, the design of IPMSM satisfying driving specifications for the direct drive has been performed using the advanced F.E.M.

  • PDF

Development of Direct Drive Motor for Next Generation Train (차세대전동차용 직접구동전동기 개발)

  • Kim, Gil-Dong;Lee, Han-Min;Lee, Jang-Mu;Oh, Se-Chan;Joung, Eui-Jin
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.688-694
    • /
    • 2009
  • As a drive system for next generation train, we have been making research and development of a direct drive traction motor system without the conventional reduction gear. This traction motor is expected to have many advantages such as low noise, reduced maintenance, and energy saving. Due to the demand for high-output motors in the limited space between the wheels, open-ventilating traction motors with gear box have been widely used for many years. However, a conventional open-ventilating traction motor is necessary periodical disassembly to remove the accumulated dust from open-air ventilation. Reducing this burden, as well as increasing energy efficiency and reducing noise, would benefit the next generation of traction motors. To address these needs, KRRI have been developing a fully enclosed type direct drive motor(DDM) with high-efficiency permanent magnet for the next generation train.

  • PDF