• 제목/요약/키워드: Direct printing

검색결과 203건 처리시간 0.031초

Single Exposure Imaging of Talbot Carpets and Resolution Characterization of Detectors for Micro- and Nano- Patterns

  • Kim, Hyun-su;Danylyuk, Serhiy;Brocklesby, William S.;Juschkin, Larissa
    • Journal of the Optical Society of Korea
    • /
    • 제20권2호
    • /
    • pp.245-250
    • /
    • 2016
  • In this paper, we demonstrate a self-imaging technique that can visualize longitudinal interference patterns behind periodically-structured objects, which is often referred to as Talbot carpet. Talbot carpet is of great interest due to ever-decreasing scale of interference features. We demonstrate experimentally that Talbot carpets can be imaged in a single exposure configuration revealing a broad spectrum of multi-scale features. We have performed rigorous diffraction simulations for showing that Talbot carpet print can produce ever-decreasing structures down to limits set by mask feature sizes. This demonstrates that large-scale pattern masks may be used for direct printing of features with substantially smaller scales. This approach is also useful for characterization of image sensors and recording media.

printing 방식을 이용한 은 나노 잉크 직접 패터닝 기술

  • 오상철;양기연;한강수;이헌
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.63-63
    • /
    • 2010
  • 나노 구조를 제작은 나노 기술을 기반으로 하는 electronics, optoelectronics, sensing, ultra display등의 여러 분야에서 이용되고 있다. 특히 나노 구조를 갖는 금속 패터닝의 경우 전자빔 리소 그래피 (electron beam lithography)나 레이저 패터닝(laser patterning)과 같은 방법들이 많이 사용되고 있다. 하지만 공정이 복잡하고 그로 인해 공정 비용이 많이 든다는 단점이 있었다. 나노 임프린트 리소그래피 기술은 master mold 표면의 나노 패턴을 가열, 가압 공정을 통해 기판 위의 고분자 레지스트 층으로 전사하는 기술이다. 이 기술은 간단한 공정을 통해 나노 패턴을 형성할 수 있는 기술이기 때용에 차세대 나노 패터닝 기술로써 각광받고 있다. 특히 이 기술은 레지스트 층과의 직접적인 접촉을 통해 나노 패턴을 형성하기 때문에 다양한 방법을 통해 기능성 나노 패턴을 직접적으로 형성할 수 있는 가능성을 지니고 있다. 본 연구는 novel meta1의 하나인 Ag 입자가 첨가된 ink solution를 master mold로부터 복제한 PDMS mold를 이용하여 다양한 구조의 나노 패턴을 만드는 방법에 대한 연구이다.

  • PDF

섬유 기반의 다공성 윈도우를 가지는 박막 제작 및 공배양에의 활용 (Fabrication of a Polymeric Film with Nanofiber-based Porous Window and Its Application to Co-culture)

  • 정영훈;이종완;진송완
    • 한국기계가공학회지
    • /
    • 제13권2호
    • /
    • pp.21-27
    • /
    • 2014
  • Recently, various biochip environments have been presented. In this study, a novel transparent film with porous membrane windows, which is an essential component in a co-cultured biochip environment, is fabricated using spin-coating, 3D printing, and electrospinning processes. In detail, a transparent polystyrene film was fabricated by means of the spin-coating process followed bywindow cutting, after which apolycaprolactone-chloroform solution was deposited along the window edge to introduce an adhesion layer between the PS film and the PCL nanofibers. Nanofibers were electrospun into the window region using a direct-write electrospinning method. Consequently, it was demonstrated that the fabricated window film could be used in a co-culture biochip environment.

Laser Direct Patterning of Carbon Nanotube Film

  • 윤지욱;조성학;장원석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.203-203
    • /
    • 2012
  • The SWCNTs network are formed on various plastic substrates such as poly(ethylene terephthalate) (PET), polyimide (PI) and soda lime glass using roll-to-roll printing and spray process. Selective patterning of carbon nanotubes film on transparent substrates was performed using a femtosecond laser. This process has many advantages because it is performed without chemicals and is easily applied to large-area patterning. It could also control the transparency and conductivity of CNT film by selective removal of CNTs. Furthermore, selective cutting of carbon nanotube using a femtosecond laser does not cause any phase change in the CNTs, as usually shown in focused ion beam irradiation of the CNTs. The patterned SWCNT films on transparent substrate can be used electrode layer for touch panels of flexible or flat panel display instead indium tin oxide (ITO) film.

  • PDF

양액의 영양분 분석을 위한 Strip형 이온선택성전극 센서 의 응용 -NO3 이온 분석 - (Application of a. Strip Ion-Selective Electrode Sensor for Hydroponic Nutrient Solution Analysis - NO3 Analysis -)

  • 김기영
    • Journal of Biosystems Engineering
    • /
    • 제28권4호
    • /
    • pp.335-342
    • /
    • 2003
  • A simple disposable thick-film potentiometric strip has been developed and evaluated for hydroponics application. The strip consisted of low ion-selective electrodes (ISE) fabricated by screen-printing technology. The electrochemical responses of ion sensors for nitrate, ammonium, potassium, and magnesium were measured with specially designed 16-channel low voltage signal transducers. The analytical characteristics of the sensors were comparable with those of conventional ISE sensors. The thick-film sensors exhibit linear relationships over five concentration decades. The concentration of N $O_3$ - ion in standard solution can be determined by direct potentiometric measurements without any conditioning before measurements. However, measurement of $K^{+}$, N $H_4$$^{+}$, and $Mg^{2+}$ ionic concentrations in nutrient solutions seems not feasible.

High performance organic gate dielectrics for solution processible organic and inorganic thin-film transitors

  • 가재원;장광석;이미혜
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.64.1-64.1
    • /
    • 2012
  • Next generation displays such as high performance LCD, AMOLED, flexible display and transparent display require specific TFT back-planes. For high performance TFT back-planes, low temperature poly silicon (LTPS), and metal-oxide semiconductors are studied. Flexible TFT backplanes require low temperature processible organic semiconductors. Not only development of active semiconducting materials but also design and synthesis of semiconductor corresponding gate dielectric materials are important issues in those display back-planes. In this study, we investigate the high heat resistant polymeric gate dielectric materials for organic TFT and inorganic TFT with good insulating properties and processing chemical resistance. We also controlled and optimized surface energy and morphology of gate dielectric layers for direct printing process with solution processible organic and inorganic semiconductors.

  • PDF

Customized 3D Printed Bolus for Breast Reconstruction for Modified Radical Mastectomy (MRM)

  • Ha, Jin-Suk;Jung, Jae Hong;Kim, Min-Joo;Jeon, Mi Jin;Jang, Won Suk;Cho, Yoon Jin;Lee, Ik Jae;Kim, Jun Won;Suh, Tae Suk
    • 한국의학물리학회지:의학물리
    • /
    • 제27권4호
    • /
    • pp.196-202
    • /
    • 2016
  • We aim to develop the breast bolus by using a 3D printer to minimize the air-gap, and compare it to commercial bolus used for patients undergoing reconstruction in breast cancer. The bolus-shaped region of interests (ROIs) were contoured at the surface of the intensity-modulated radiation therapy (IMRT) thorax phantom with 5 mm thickness, after which the digital imaging and communications in mdicine (DICOM)-RT structure file was acquired. The intensity-modulated radiation therapy (Tomo-IMRT) and direct mode (Tomo-Direct) using the Tomotherapy were established. The 13 point doses were measured by optically stimulated luminescence (OSLD) dosimetry. The measurement data was analyzed to quantitatively evaluate the applicability of 3D bolus. The percentage change of mean measured dose between the commercial bolus and 3D-bolus was 2.3% and 0.7% for the Tomo-direct and Tomo-IMRT, respectively. For air-gap, range of the commercial bolus was from 0.8 cm to 1.5 cm at the periphery of the right breast. In contrast, the 3D-bolus have occurred the air-gap (i.e., 0 cm). The 3D-bolus for radiation therapy reduces the air-gap on irregular body surface that believed to help in accurate and precise radiation therapy due to better property of adhesion.

Accuracy of orthodontic movements with 3D printed aligners: A prospective observational pilot study

  • Marco Migliorati;Sara Drago;Tommaso Castroflorio;Paolo Pesce;Giovanni Battista;Alessandra Campobasso;Giorgio Gastaldi;Filippo Forin Valvecchi;Anna De Mari
    • 대한치과교정학회지
    • /
    • 제54권3호
    • /
    • pp.160-170
    • /
    • 2024
  • Objective: Owing to the availability of 3D software, scanners, and printers, clinicians are encouraged to produce in-office aligners. Recently, a new direct-printing resin (Tera Harz TC-85DAC) has been introduced. Studies on its mechanical characteristics and biological effects have been published; however, evidence on its efficacy in orthodontic treatment remains scarce. This pilot study aimed to investigate the accuracy of teeth movement achieved with direct-printed aligners. Methods: Seventeen patients (eight males and nine females) with a mean age of 27.67 ± 8.95 years, presenting with dental rotations < 30° and spaces/crowding < 5 mm, were recruited for this study. The teeth movement was planned starting from a T0 digital dental cast. The 3D direct-printed aligners were produced using Tera Harz TC-85DAC resin. Once the orthodontic treatment was completed, a final digital cast was obtained (T1). The planned teeth positions were then superimposed onto the T0 and T1 digital models. The differences between the programmed movements and the achieved overall torque, tip, rotation, and transverse dimensions were assessed using the paired t test or Wilcoxon's signed rank test. Results: The overall accuracies for torque, tip, and rotation were 67.6%, 64.2%, and 72.0%, respectively. The accuracy of the change in transverse diameter was 99.6%. Conclusions: Within the limits of the present pilot study (difficulties with abnormally shaped teeth and use of attachments), it can be concluded that 3D printed aligners can be successfully printed in-house and utilized for mildly crowded cases, with a comparable accuracy of tooth movement to that of other aligners.

DED방식의 적층가공을 통한 금형으로의 응용사례 및 효과 (Effects and Application Cases of Injection Molds by using DED type Additive Manufacturing Process)

  • 김우성;홍명표;김양곤;서창희;이종원;이성희;성지현
    • Journal of Welding and Joining
    • /
    • 제32권4호
    • /
    • pp.10-14
    • /
    • 2014
  • Laser aided Direct Metal Tooling(DMT) process is a kind of Additive Manufacturing processes (or 3D-Printing processes), which is developed for using various commercial steel powders such as P20, P21, SUS420, H13, D2 and other non-ferrous metal powders, aluminum alloys, titanium alloys, copper alloys and so on. The DMT process is a versatile process which can be applied to various fields like the mold industry, the medical industry, and the defense industry. Among of them, the application of DMT process to the mold industry is one of the most attractive and practical applications since the conformal cooling channel core of injection molds can be fabricated at the slightly expensive cost by using the hybrid fabrication method of DMT technology compared to the part fabricated with the machining technology. The main objectives of this study are to provide various characteristics of the parts made by DMT process compared to the same parts machined from bulk materials and prove the performance of the injection mold equipped with the conformal cooling channel core which is fabricated by the hybrid method of DMT process.

PBF와 DED 공정으로 제조된 17-4PH 스테인리스 강의 미세조직 및 기계적 특성 평가 (Evaluation of Microstructure and Mechanical Properties in 17-4PH Stainless Steels Fabricated by PBF and DED Processes)

  • 윤종천;이민규;최창영;김동혁;정명식;최용진;김다혜
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.83-88
    • /
    • 2018
  • Additive manufacturing (AM) technologies have attracted wide attention as key technologies for the next industrial revolution. Among AM technologies using various materials, powder bed fusion (PBF) processes and direct energy deposition (DED) are representative of the metal 3-D printing process. Both of these processes have a common feature that the laser is used as a heat source to fabricate the 3-D shape through melting of the metal powder and solidification. However, the material properties of the deposited metals differ when produced by different process conditions and methods. 17-4 precipitation-hardening stainless steel (17-4PH SS) is widely used in the field of aircraft, chemical, and nuclear industries because of its good mechanical properties and excellent corrosion resistance. In this study, we investigated the differences in microstructure and mechanical properties of deposited 17-4PH SS by PBF and DED processes, including the heat treatment effect.