• Title/Summary/Keyword: Direct inlet

Search Result 126, Processing Time 0.023 seconds

Process Modeling of an Iron Ore Sintering Bed for Flue Gas Recirculation (배가스 재순환 적용을 위한 제철 소결 베드 프로세스 모델링)

  • Ahn, Hyung-Jun;Choi, Sang-Min;Cho, Byung-Kook
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.23-30
    • /
    • 2011
  • In the iron and steel manufacturing, sintering process precedes blast furnace to prepare feed materials by agglomerating powdered iron ore to form larger particles. There are several techniques which have devised to improve sintering production and productivity including flue gas recirculation(FGR) and additive gas enriched operation. The application of those techniques incurs variations of process configurations as well as inlet and outlet gas conditions such as temperature, composition, and flow rate which exert direct influence on reactions in the bed or the operation of the entire plant. In this study, an approach of sintering bed modeling using flowsheet process simulator was devised in consideration of FGR and the change of incoming and outgoing gas conditions. Results of modeling for both normal and FGR sintering process were compared in terms of outgoing gas temperature, concentration, and moisture distribution pattern as well as incoming gas conditions. It is expected to expand the model for various process configurations with FGR, which may provide the usefulness for design and operation of sintering plant with FGR.

The study of predictive performance of low Reynolds number turbulence model in the backward-facing step flow (후방계단유동에 대한 저레이놀즈 수 난류모형의 예측성능에 관한 연구)

  • Kim, Won-Gap;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1661-1670
    • /
    • 1996
  • Incompressible flow over a backward-facing step is computed by low Reynolds number turbulence models in order to compare with direct simulation results. In this study, selected low Reynolds number 1st and 2nd (Algebraic Stress Model : ASM) moment closure turbulence models are adopted and compared with each other. Each turbulence model predicts different flow characteristics, different re-attachment point, velocity profiles and Reynolds stress distribution etc. Results by .kappa.-.epsilon. turbulence models indicate that predicted re-attachment lengths are shorter than those by standard model. Turbulent intensity and eddy viscosity by low Reynolds number .kappa.-.epsilon. models are still greater than DNS results. The results by algebraic stress model (ASM) are more reasonable than those by .kappa.-.epsilon. models. The convective scheme is QUICK (Quadratic Upstream Interpolation for Convective Kinematics) and SIMPLE algorithm is adopted. Reynolds number based on step height and inlet free stream velocity is 5100.

Assessment of CHF Correlations for Internally Heated Concentric Annulus Channels

  • Park, Jae-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.325-330
    • /
    • 1996
  • The existing CHF correlations for internally heated concentric annulus channels are assessed using KAIST CHF database for uniformly heated vertical annuli. Six annulus correlations (Jannsen-Kervinen. Barnett, Levitan-Lantsman, Kumamaru et al., Doerffer et al., and Bobkov et at.) are chosen for assessment based on literature survey and Groeneveld et al.'s CHF table for round tube is also assessed for comparison. Among the above correlations, two are inlet-condition type and others local conditions type. To make the comparison meaningful, the local-condition-type correlations are assessed in two ways: direct substitution method (DSM) and heat balance condition method (HBM). Totally 1174 data are classified into 10 groups based on pressure and mass flux conditions and correlations are assessed to each group separately. Prediction capability of each correlation depends on the data group and none shows the best prediction over the entire group. In overall, the correlations by Doerffer et al. and Jannsen et al. appear to be the best, but Barnett or Levitan-Lantsman correlations also show reasonable prediction for most groups. However, the low-pressure, ]ow flow CHFs are not well predicted by any correlations. The CHF table for round tubes overpredicts the CHF in annuli at fixed local conditions.

  • PDF

Experimental Investigation on Forced Convective Heat Transfer Characteristic Generated to Heated Tube (가열된 튜브에서 발생하는 강제 대류열전달 특성에 관한 실험적 연구)

  • Park, Hee-Ho;Lee, Yang-Suk;Kim, Sun-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.90-98
    • /
    • 2006
  • The Heated Tube Facility(HIF) was fabricated to identify the forced convective heat transfer and the cooling characteristic for the hydrocarbon fuel(Jet A-1), which is used for the coolant of the regenerative cooling system. The forced convective heat transfer coefficient was calculated from the measured coolant and tube surface temperature. In case of using the Jet A-1, the maximum heat flux which the coolant can absorb was identified by determining the critical wall temperature generating the burnout on the fixed flow condition. The inlet bulk-temperature of the coolant has a direct influence on the forced convective heat transfer characteristic.

CONCEPTUAL FUEL CHANNEL DESIGNS FOR CANDU-SCWR

  • Chow, Chun K.;Khartabil, Hussam F.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.139-146
    • /
    • 2008
  • This paper presents two of the fuel channel designs being considered for the CANDU-SCWR, a pressure-tube type supercritical water cooled reactor. The first is an insulated pressure tube design. The pressure tube is thermally insulated from the hot coolant by a porous ceramic insulator. Each pressure tube is in direct contact with the moderator, which operates at an average temperature of about $80^{\circ}C$. The low temperature allows zirconium alloys to be used. A perforated metal liner protects the insulator from being damaged by the fuel bundles and erosion by the coolant. The coolant pressure is transmitted through the perforated metal liner and insulator and applied directly to the pressure tube. The second is a re-entrant design. The fuel channel consists of two concentric tubes, and a calandria tube that separates them from the moderator. The coolant enters between the annulus of the two concentric fuel channel tubes, then exits the fuel channel through the inner tube, where the fuel bundles reside. The outer tube bears the coolant pressure and its temperature will be the same as the coolant inlet temperature, ${\sim}350^{\circ}C$. Advantages and disadvantages of these designs and the material requirements are discussed.

Design and Performance Evaluation of a Flow Regulator for Thrust Control of a Liquid Rocket Engine (액체로켓엔진 추력제어를 위한 유량제어밸브의 설계 및 성능 평가)

  • Jung, Tae-Kyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.443-446
    • /
    • 2012
  • A thrust control valve of a liquid rocket engine plays a role to increase or decrease the thrust of an LRE by modulating the flow rate of propellant into a gas-generator. This paper deals with a flow regulator that has functions of not only modulating thrust but also maintaining constant flow rate regardless of pressure change at inlet or outlet of the flow regulator. A direct acting flow regulator was fabricated and tested for the comparison of experimental and simulation results under steady-state conditions. The drawbacks and limitations of the flow regulator were analyzed. Also the new design of a flow regulator was proposed.

  • PDF

Experimental investigation of two-phase natural circulation loop as passive containment cooling system

  • Lim, Sun Taek;Kim, Koung Moon;Kim, Haeseong;Jerng, Dong-Wook;Ahn, Ho Seon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3918-3929
    • /
    • 2021
  • In this study, we experimentally investigate of a two-phase natural circulation loop that functions as a passive containment cooling system (PCCS). The experimental apparatus comprises two loops: a hot loop, for simulating containment under severe accidents, and a natural circulation loop, for simulating the PCCS. The experiment is conducted by controlling the pressure and inlet temperature of the hot loop in the range of 0.59-0.69 MPa (abs) and 119.6-158.8 ℃, respectively. The heat balance of the hot loop is established and compared with a natural circulation loop to assess the thermal reliability of the experimental apparatus, and an additional system is installed to measure the vapor mass flow rate. Furthermore, the thermal-hydraulic characteristics are considered in terms of a temperature, mass flow rate, heat transfer coefficient (HTC), etc. The flow rate of the natural circulation loop is induced primarily by flashing, and a distortion is observed in the local HTC because of the fully develop as well as subcooled boiling. As a result, we present the amount of heat capacity that the PCCS can passively remove according to the experimental conditions and compared the heat transfer performance using Chen's and Dittus-Boelter correlation.

Design and Performance Analysis of Conical Solar Concentrator

  • Na, Mun Soo;Hwang, Joon Yeal;Hwang, Seong Geun;Lee, Joo Hee;Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.21-29
    • /
    • 2018
  • Purpose: The objective of this study is to evaluate the performance of the conical solar concentrator (CSC) system, whose design is focused on increasing its collecting efficiency by determining the optimal conical angle through a theoretical study. Methods: The design and thermal performance analysis of a solar concentrator system based on a $45^{\circ}$ conical concentrator were conducted utilizing different mass flow rates. For an accurate comparison of these flow rates, three equivalent systems were tested under the same operating conditions, such as the incident direct solar radiation, and ambient and inlet temperatures. In order to minimize heat loss, the optimal double tube absorber length was selected by considering the law of reflection. A series of experiments utilizing water as operating fluid and two-axis solar tracking systems were performed under a clear or cloudless sky. Results: The analysis results of the CSC system according to varying mass flow rates showed that the collecting efficiency tended to increase as the flow rate increased. However, the collecting efficiency decreased as the flow rate increased beyond the optimal value. In order to optimize the collecting efficiency, the conical angle, which is a design factor of CSC, was selected to be $45^{\circ}$ because its use theoretically yielded a low heat loss. The collecting efficiency was observed to be lowest at 0.03 kg/s and highest at 0.06 kg/s. All efficiencies were reduced over time because of variations in ambient and inlet temperatures throughout the day. The maximum efficiency calculated at an optimum flow rate of 0.06 kg/s was 85%, which is higher than those of the other flow rates. Conclusions: It was reasonable to set the conical angle and mass flow rate to achieve the maximum CSC system efficiency in this study at $45^{\circ}$ and 0.06 kg/s, respectively.

Decomposition of Ethylene using a Hybrid Catalyst-packed Bed Plasma Reactor System (플라즈마 충진 촉매 시스템을 이용한 에틸렌 저감 연구)

  • Lee, Sang Baek;Jo, Jin-Oh;Jang, Dong Lyong;Mok, Young Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.577-585
    • /
    • 2014
  • A series of experiments using atmospheric-pressure non-thermal plasma coupled with transition metal catalysts were performed to remove ethylene from agricultural storage facilities. The non-thermal plasma was created by dielectric barrier discharge, which was in direct contact with the catalyst pellets. The transition metals such as Ag and $V_2O_5$ were supported on ${\gamma}-Al_2O_3$. The effect of catalyst type, specific input energy (SIE) and oxygen content on the removal of ethylene was examined to understand the behavior of the hybrid plasma-catalytic reactor system. With the other parameters kept constant, the plasma-catalytic activity for the removal of ethylene was in order of $V_2O_5/{\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ from high to low. Interestingly, the rate of plasma-catalytic ozone generation was in order of $V_2O_5/{\gamma}-Al_2O_3$ > ${\gamma}-Al_2O_3$ > $Ag/{\gamma}-Al_2O_3$, implying that the catalyst activation mechanisms by plasma are different for different catalysts. The results obtained by varying the oxygen content indicated that nitrogen-derived reactive species dominated the removal of ethylene under oxygen-lean condition, while ozone and oxygen atoms were mainly involved in the removal under oxygen-rich condition. When the plasma was coupled with $V_2O_5/{\gamma}-Al_2O_3$, nearly complete removal of ethylene was achieved at oxygen contents higher than 5% by volume (inlet ethylene: 250 ppm; gas flow rate: $1.0Lmin^{-1}$; SIE: ${\sim}355JL^{-1}$).

Comparison of Nano Particle Size Distributions by Different Measurement Techniques

  • Bae, Min-Suk;Oh, Joon-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.219-233
    • /
    • 2010
  • Understanding the Nano size particles is of great interest due to their chemical and physical behaviors such as compositions, size distributions, and number concentrations. Therefore, accurate measurements of size distributions and number concentrations in ultrafine particles are getting required because expected losses such as diffusion for the instrument system from ambient inlet to detector are a significant challenge. In this study, the data using the computed settling losses, impaction losses, diffusion losses for the sampling lines (explored different sampling line diameters, horizontal length, number of bending, line angles, flow rates with and without a bypass), and diffusion losses for the Scanning Mobility Particle Sizers are examined. As expected, the settling losses and impaction losses are very minor under 100 nm, however, diffusion loss corrections for the sampling lines and the size instrument make a large difference for any measurement conditions with high numbers of particles smaller mobility size. Both with and without the loss corrections, which can affect to size distributions and number concentrations are described. First, 80% or more of the smallest particles (less than 10 nm) can be lost in the condition of a flow rate of 0.3 liter per minute and the length of sampling line of 1.0 m, second, total number concentrations of measurements are quite significantly affected, and the mode structure of the size distribution changes dramatically after the loss corrections applied. With compared to the different measurements, statistically diffusion loss corrections yield a required process of the ambient particle concentrations. Based on the current study, as an implication, a possibility of establishing direct revelation mechanisms is suggested.