• 제목/요약/키워드: Direct identification

검색결과 511건 처리시간 0.027초

다중 힘 오차를 이용한 공정 파라메타 추정 및 직접 적응제어에 관한 연구 (A Study on Identification of Plant Paramether Using Multi-Term Error and Direct Adaptive Control)

  • 함운철;최계근
    • 대한전자공학회논문지
    • /
    • 제25권4호
    • /
    • pp.386-392
    • /
    • 1988
  • In this paper, we suggest a modified Gradient method for the identification of plant parameter. And also, through this new identification method, a direct adaptive control theory is proposed for a single-input single-output discrete system. Direct adaptive control theory proposed in this papar ensures global stability and the results of compute simulation show that the proposed algorithm can be applied to both stable and unstable plant.

  • PDF

특성행렬 직접 규명법에 의한 강체특성의 실험적 추정 (Experimental Identification of Rigid Body Properties by Direct System Identification Method)

  • Jeong, W.B.;Ryu, S.J.;Koe, D.M.
    • 한국정밀공학회지
    • /
    • 제12권9호
    • /
    • pp.22-29
    • /
    • 1995
  • An experimental method to identify the rigid properties (mass, moment of inertia, center of mass) of mounted structures is presented. A direct system identification method is developed and applied to identify the mass, damping and stiffness martix directly from the translational response of vibration testing. Conventional method is sensitive to noise since it needs artificial rotational response of temporary center of mass which is made by the linear transformation of translational response. A presented method needs only the translational response, and it is robuster to noise than conventional method. Several experimental and numerical implementations show the presented method is effective.

  • PDF

스텍트럴요소 모델과 Newton-Raphson 법을 이용한 구조손상규명 (Structural Damage Identification by Using the Spectral Element Model and the Newton-Raphson Method)

  • 김정수;권경수;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.921-926
    • /
    • 2004
  • In this paper, a nonlinear structural damage identification algorithm is derived by taking into account the non-linearity of damage. The structural damage identification analyses are conducted by using the direct method and the Newton-Raphson method. It is found that, the Newton-Raphson method in general provides the better damage identification results when compared with the results obtained by the direct method.

  • PDF

Identification of structural systems and excitations using vision-based displacement measurements and substructure approach

  • Lei, Ying;Qi, Chengkai
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.273-286
    • /
    • 2022
  • In recent years, vision-based monitoring has received great attention. However, structural identification using vision-based displacement measurements is far less established. Especially, simultaneous identification of structural systems and unknown excitation using vision-based displacement measurements is still a challenging task since the unknown excitations do not appear directly in the observation equations. Moreover, measurement accuracy deteriorates over a wider field of view by vision-based monitoring, so, only a portion of the structure is measured instead of targeting a whole structure when using monocular vision. In this paper, the identification of structural system and excitations using vision-based displacement measurements is investigated. It is based on substructure identification approach to treat of problem of limited field of view of vision-based monitoring. For the identification of a target substructure, substructure interaction forces are treated as unknown inputs. A smoothing extended Kalman filter with unknown inputs without direct feedthrough is proposed for the simultaneous identification of substructure and unknown inputs using vision-based displacement measurements. The smoothing makes the identification robust to measurement noises. The proposed algorithm is first validated by the identification of a three-span continuous beam bridge under an impact load. Then, it is investigated by the more difficult identification of a frame and unknown wind excitation. Both examples validate the good performances of the proposed method.

압력제어용 DDV를 이용한 전기.유압 서보시스템의 식별 및 제어 (Identification and Control of a Electro-Hydraulic Servo System Using a Direct Drive Valve)

  • 이창돈;이상훈;곽동훈;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제9권2호
    • /
    • pp.124-130
    • /
    • 2003
  • The electro-hydraulic servo system with a servo valve is applied widely in force control. However, the composition of control system using a servo valve is difficult due to nonlinearities in the servo valve, such as square-root terms in flow equation. The electro-hydraulic servo system using a DDV(Direct Drive Valve) instead of a servo valve was proposed and it's characteristics was estimated. The DDV and whole system are modelled by parameter identification using the input-and-output data, then the models are verified by the comparison of simulation with experiment. Also, the state feedback controller has been designed based on this model, then the performance of the electro-hydraulic force servo system using a DDV is evaluated by simulation and experimental results.

궤환 제어를 이용한 시스템 규명 (System identification using the feedback loop)

  • 정훈상;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.409-412
    • /
    • 2001
  • Identification of systems operating in closed loop has long been of prime interest in industrial applications. The fundamental problem with closed-loop data is the correlation between the unmeasurable noise and the input. This is the reason why several methods that work in open loop fail when applied to closed-loop data. The prediction error based approaches to the closed-loop system are divided to direct method and indirect method. Both of direct and indirect methods are known to be applied to the closed-loop data without critical modification. But the direct method induces the bias error in the experimental frequency response function and this bias error may deteriorates the parameter estimation performance

  • PDF

Direct identification of aeroelastic force coefficients using forced vibration method

  • Herry, Irpanni;Hiroshi, Katsuchi;Hitoshi, Yamada
    • Wind and Structures
    • /
    • 제35권5호
    • /
    • pp.323-336
    • /
    • 2022
  • This study investigates the applicability of the direct identification of flutter derivatives in the time domain using Rational Function Approximation (RFA), where the extraction procedure requires either a combination of at least two wind speeds or one wind speed. In the frequency domain, flutter derivatives are identified at every wind speed. The ease of identifying flutter derivatives in the time domain creates a paradox because flutter derivative patterns sometimes change in higher-order polynomials. The first step involves a numerical study of RFA extractions for different deck shapes from existing bridges to verify the accurate wind speed combination for the extraction. The second step involves validating numerical simulation results through a wind tunnel experiment using the forced vibration method in one degree of freedom. The findings of the RFA extraction are compared to those obtained using the analytical solution. The numerical study and the wind tunnel experiment results are in good agreement. The results show that the evolution pattern of flutter derivatives determines the accuracy of the direct identification of RFA.

Dynamic identification of soil-structure system designed by direct displacement-based method for different site conditions

  • Mahmoudabadi, Vahidreza;Bahar, Omid;Jafari, Mohammad Kazem;Safiey, Amir
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.445-458
    • /
    • 2019
  • This study mainly aims to assess the performance of soil-structure systems designed by direct displacement-based method coupled with strong column-weak beam design concept through various system identification techniques under strong ground motions. To this end, various system identification methods are employed to evaluate the dynamic characteristics of a structure (i.e., modal frequency, system damping, mode shapes, and plastic hinge formation pattern) under a strong seismic excitation considering soil-structure interaction for different site conditions as specified by ASCE 7-10. The scope of the study narrowed down to the code-complying low- to high-rise steel moment resisting frames with various heights (4, 8, 12, 16-story). The comparison of the result of soil-structure systems with fix-based support condition indicates that the modal frequencies of these systems are highly influenced by the structure heights, specifically for the softer soils. This trend is more significant for higher modes of the system which can considerably dominate the response of structures in which the higher modes have more contribution in dynamic response. Amongst all studied modes of the vibration, the damping ratio estimated for the first mode is relatively the closet to the initial assumed damping ratios. Moreover, it was found that fewer plastic hinges are developed in the structure of soil-structure systems with a softer soil which contradicts the general expectation of higher damageability of such structural systems.

수동형 RFID 시스템 적용을 위한 SAW ID 태그 및 수신 시스템 구현 (SAW ID Tag and Receiver System for Passive RFID System Application)

  • 김재권;박주용;범진욱
    • 대한전자공학회논문지SD
    • /
    • 제45권4호
    • /
    • pp.64-71
    • /
    • 2008
  • SAW(Surface Acoustic Waves)를 기반으로 passive RFID(Radio Frequency IDentification) tag 및 송수신 시스템을 제작하였다. Pulse position encoding 방식의 SAW ID 태그(tag)를 제작하여 amplitude on/off 방식의 SAW ID 태그에 비해 3배의 데이터 용량 증대 효과를 얻을 수 있었다. 또한, 수신 시스템을 heterodyne 방식과 direct conversion 방식으로 제작하였다. 측정 결과 direct conversion 방식으로 제작된 수신 시스템이 heterodyne 방식의 수신 시스템과 비교하여 isolation 특성이 10 dB 증가하였으며, 그 결과 무선 도달 거리가 증가했다.

시스템 식별 기법을 이용한 고장 탐지기 설계 (Design of a Fault Detector by using System Identification)

  • 박태동;이재호;백산림;박기헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.199-200
    • /
    • 2008
  • Demand for reliability and safety in modem systems has been increased in the research on fault detection and isolation. At traditional approaches to fault detection, redundant sensors have been used. More advanced methods are the residual analysis of signals which are created by the comparison between the actual plant behavior and the output response of a mathematical model. However, mathematical system models are difficult to obtain by using physical laws. These problems can be solved by system identification. In this paper, the transfer function of a direct current motor is estimated by using the system identification. And, the efficiency of the fault detector design is verified by using experiments.

  • PDF