• 제목/요약/키워드: Direct Water Consumption

검색결과 68건 처리시간 0.031초

LNG냉열발전시스템에 있어서 직접팽창 및 유기랭킨사이클의 운전성능평가 (Performance Analysis of Direct Expansion and Organic Rankine Cycle for a LNG Cold Power Generation System)

  • 조은비;정문;황인주;강춘형
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권1호
    • /
    • pp.55-62
    • /
    • 2015
  • 국내에서는 천연가스 공급국가와 수입국가의 거리, 공급시설 투자, 국가 간 협력 등 여러 가지 제약에 따라 액화천연가스를 수입하고 있다. 수입한 액화천연가스를 수요처로 공급하기 위해 해수를 이용한 기화과정에서 냉열이 낭비되고 있다. 본 연구에서는 이러한 냉열을 효율적으로 활용하는 냉열발전시스템에서 직접팽창과 유기랭킨사이클 방식의 운전성능을 비교 연구하였다. 시뮬레이션은 Aspen HYSYS를 이용하여 수행하였으며, 운전성능 분석은 T-S 선도 및 시스템 성능 해석을 토대로 비교분석하였다. 시뮬레이션 결과로부터 발전시스템의 운전 측면에서는 유기랭킨사이클 방식이 유리한 것을 확인하였다.

Sensing Technology for Rapid Detection of Phosphorus in Water: A Review

  • Islam, Sumaiya;Reza, Md Nasim;Jeong, Jin-Tae;Lee, Kyeong-Hwan
    • Journal of Biosystems Engineering
    • /
    • 제41권2호
    • /
    • pp.138-144
    • /
    • 2016
  • Purpose: Phosphorus is an essential element for water quality control. Excessive amounts of phosphorus causes algal bloom in water, which leads to eutrophication and a decline in water quality. It is necessary to maintain the optimum amount of phosphorus present. During the last decades, various studies have been conducted to determine phosphorus content in water. In this study, we present a comprehensive overview of colorimetric, electrochemical, fluorescence, microfluidic, and remote sensing technologies for the measurement of phosphorus in water, along with their working principles and limitations. Results: The colorimetric techniques determine the concentration of phosphorus through the use of color-generating reagents. This is specific to a single chemical species and inexpensive to use. The electrochemical techniques operate by using a reaction of the analyte of interest to generate an electrical signal that is proportional to the sample analyte concentration. They show a good linear output, good repeatability, and a high detection capacity. The fluorescence technique is a kind of spectroscopic analysis method. The particles in the sample are excited by irradiation at a specific wavelength, emitting radiation of a different wavelength. It is possible to use this for quantitative and qualitative analysis of the target analyte. The microfluidic techniques incorporate several features to control chemical reactions in a micro device of low sample volume and reagent consumption. They are cheap and rapid methods for the detection of phosphorus in water. The remote sensing technique analyzes the sample for the target analyte using an optical technique, but without direct contact. It can cover a wider area than the other techniques mentioned in this review. Conclusion: It is concluded that the sensing technologies reviewed in this study are promising for rapid detection of phosphorus in water. The measurement range and sensitivity of the sensors have been greatly improved recently.

연차간 기상조건에 따른 벼 품종의 담수직파재배 양식간 생육 및 수량 (Difference of Growth and Yield among Rice Cultivars and Direct Seeding Methods as Affected by Yearly Variation Weather)

  • 최원영;강시용;이정택
    • 한국환경농학회지
    • /
    • 제18권3호
    • /
    • pp.229-235
    • /
    • 1999
  • 기상조건에 따른 벼 담수직파 재배양식별의 생육 및 수량의 연차간 변화를 밝히고자 호남농업시험장 수도포장(전북통, 미사질양토)에서 동진벼와 농안벼를 1995년과 1996년의 2개년 모두 5월 12일에 파종하여 재배시험을 실시하였다. 직파양식별 입모율은 담수표면산파>담수표면조파>무논골뿌림 순이었으며, 동진벼가 농안벼보다 높았는데, 파종후 입모기간이 저온으로 경과하였던 1995년이 1996년보다 낮았다. 최고분얼기와 유수분화기의 엽면적 및 지상부건물중은 두 품종 모두 1995년에는 담수직파재배가 이앙재배보다 높았으나, 1996년에는 반대경향을 나타냈는데, 생육초기를 저온으로 경과하면 담수직파가 이앙재배보다 생육이 빨랐다. 호흡소모계수는 1995년의 경우 7월 상${\cdot}$중순과 8월하순 및 9월상순에서 평년 또는 1996년보다 높았다. 이 두시기는 절간신장기 및 등숙기에 해당되고 간장(稈長)의 도장(徒長) 및 등숙의 저하를 보였다. 이러한 경향은 이앙재배보다 담수직파 벼에서 뚜렷하였다. 등숙속도는 1995년의 경우 이앙재배가 직파재배보다 느린 경향이었으나 1996년에는 이앙재배가 등숙초기에 빠른 경향이었다. 수당립수(穗當粒數)는 담수직파가 이앙재배보다 많았으나, 등숙비율은 이앙재배에서 높았으며, 쌀 수량도 이앙재배에서 약간 높았다. 쌀수량은 등숙비율이 높은 동진벼가 농안벼보다 높았는데, 특히 농안벼는 담수직파하면 이앙재배보다 출수가 현저히 지연되었으며, 내도복성은 강하나 기상조건이 불량하면 입모율과 등숙율이 떨어졌다.

  • PDF

디젤기관 매연 배출물에 미치는 재순환 배기의 영향에 관한 연구 (A Study on the Effects of Recirculated Exhaust Gas on Soot Emissions in Diesel Engines)

  • 배명환;임재근
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.142-154
    • /
    • 1998
  • The effects of recirculated exhaust gas on the characteristic of soot emissions have been investigated by using an eight-cylinder, four-stroke, direct injection and water-cooled diesel engine operating at several loads and speeds. The experiments in this study are carried out at the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate are used to analyze and discuss the influences of EGR rate on soot emissions. Results of this study indicate that soot emissions increase owing to the drop of intake oxygen concentration and the rise of equivalence ratio as the EGR rate increases at a given engine load and speed, especially the high load.

  • PDF

A study on performance and smoke emission characteristics by blending low purity methanol in a DI diesel engine with the EGR rates of 0, 12.8 and 16.5%

  • Syaiful, Syaiful;Bae, Myung-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.701-710
    • /
    • 2013
  • The purpose of this study is to investigate experimentally the effect of low purity methanol (LPM) on performance and smoke emission characteristics by using a four-cycle, four-cylinder, water-cooled, direct injection diesel engine with EGR system. The experiments are performed by the change of engine load in the engine load ranges of 25 to 100% with an interval of 25% under the constant engine speed of 2000 rpm. The LPM in the fuel blends contained 24.88% water by volume. The blended fuel ratios of diesel oil to LPM are maintained at 100/0, 95/5, 90/10 and 85/15% on the volume basis. In this paper, EGR rates are varied in three conditions of 0, 12.8 and 16.5%. The result shows that the brake power of a blended fuel with 15% LPM is reduced more 11.1% than that of the neat diesel oil at the full load with the EGR rate of 16.5%. At this condition, also, the brake specific fuel consumption (BSFC) is increased by 3.2%, the exhaust gas temperature is decreased by 10.7%, the smoke opacity is decreased by 18.7% and the brake thermal efficiency is increased by 7.3%. The sharp reduction of smoke opacity for a blended fuel with the LPM content of 15% at the full load without EGR system is observed by 68.4% compared with that of the neat diesel oil due to the high oxygen content of LPM.

Economic Evaluation of Coupling APR1400 with a Desalination Plant in Saudi Arabia

  • Abdoelatef, M. Gomaa;Field, Robert M.;Lee, YongKwan
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.73-87
    • /
    • 2016
  • Combining power generation and water production by desalination is economically advantageous. Most desalination projects use fossil fuels as an energy source, and thus contribute to increased levels of greenhouse gases. Environmental concerns have spurred researchers to find new sources of energy for desalination plants. The coupling of nuclear power production with desalination is one of the best options to achieve growth with lower environmental impact. In this paper, we will per-form a sensitivity study of coupling nuclear power to various combinations of desalination technology: {1} thermal (MSF [Multi-Stage Flashing], MED [Multi-Effect Distillation], and MED-TVC [Multi-Effect Distillation with Thermal Vapour Compression]); {2} membrane RO [Reverse Osmosis]; and {3} hybrid (MSF-RO [Multi-Stage Flashing & Reverse Osmosis] and MED-RO [Multi-Effect Distillation & Reverse Osmosis]). The Korean designed reactor plant, the APR1400 will be modeled as the energy production facility. The economical evaluation will then be executed using the computer program DEEP (Desalination Economic Evaluation Program) as developed by the IAEA. The program has capabilities to model several types of nuclear and fossil power plants, nuclear and fossil heat sources, and thermal distillation and membrane desalination technologies. The output of DEEP includes levelized water and power costs, breakdowns of cost components, energy consumption, and net saleable power for any selected option. In this study, we will examine the APR1400 coupled with a desalination power plant in the Kingdom of Saudi Arabia (KSA) as a prototypical example. The KSA currently has approximately 20% of the installed worldwide capacity for seawater desalination. Utilities such as power and water are constructed and run by the government. Per state practice, economic evaluation for these utilities do not consider or apply interest or carrying cost. Therefore, in this paper the evaluation results will be based on two scenarios. The first one assumes the water utility is under direct government control and in this case the interest and discount rate will be set to zero. The second scenario will assume that the water utility is controlled by a private enterprise and in this case we will consider different values of interest and discount rates (4%, 8%, & 12%).

An IoT routing based Local River Field Environment Management solution using Uzbekistan Testbed

  • Khudaybergenov, Timur;Park, Youngki;Im, Sangil;Ho, Bae Jin;Yang, Seungyoun;Kim, Jintae;Lee, Sunghwa;Cha, Dae Yoon;Woo, Deokgun;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • 제9권3호
    • /
    • pp.1-8
    • /
    • 2020
  • Water consumption has grown at more than 2.5 times, comparing the past century. About 2.8 billion people live in river basins with some form of water deficit, because more than 75 % of the river flows are withdrawn for agriculture and other needs. Challenges faced by more and more countries in their struggle for economic and social development are increasingly related to water. This paper proposes a test of an effective local river field environment management solution. And describing a part of a pilot project for the ministry of water resources of Uzbekistan. Current work focused on direct action items of the existing project and describe an IoT routing based solution for local river field environment management solutions. Suggested technological decisions provided by needs and on-site testing results. The paper describes the backbone of IoT routing based river water resources management system.

An IoT based Green Home Architecture for Green Score Calculation towards Smart Sustainable Cities

  • Kumaran, K. Manikanda;Chinnadurai, M.;Manikandan, S.;Murugan, S. Palani;Elakiya, E.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2377-2398
    • /
    • 2021
  • In the recent modernized world, utilization of natural resources (renewable & non-renewable) is increasing drastically due to the sophisticated life style of the people. The over-consumption of non-renewable resources causes pollution which leads to global warming. Consequently, government agencies have been taking several initiatives to control the over-consumption of non-renewable natural resources and encourage the production of renewable energy resources. In this regard, we introduce an IoT powered integrated framework called as green home architecture (GHA) for green score calculation based on the usage of natural resources for household purpose. Green score is a credit point (i.e.,10 pts) of a family which can be calculated once in a month based on the utilization of energy, production of renewable energy and pollution caused. The green score can be improved by reducing the consumption of energy, generation of renewable energy and preventing the pollution. The main objective of GHA is to monitor the day-to-day usage of resources and calculate the green score using the proposed green score algorithm. This algorithm gives positive credits for economic consumption of resources and production of renewable energy and also it gives negative credits for pollution caused. Here, we recommend a green score based tax calculation system which gives tax exemption based on the green score value. This direct beneficiary model will appreciate and encourage the citizens to consume fewer natural resources and prevent pollution. Rather than simply giving subsidy, this proposed system allows monitoring the subsidy scheme periodically and encourages the proper working system with tax exemption rewards. Also, our GHA will be used to monitor all the household appliances, vehicles, wind mills, electricity meter, water re-treatment plant, pollution level to read the consumption/production in appropriate units by using the suitable sensors. These values will be stored in mass storage platform like cloud for the calculation of green score and also employed for billing purpose by the government agencies. This integrated platform can replace the manual billing and directly benefits the government.

Water-Environment-Economic nexus analysis of household food waste impacts: A case study of Korean households

  • Adelodun, Bashir;Cho, Gun Ho;Kim, Sang Hyun;Odey, Golden;Choi, Kyung Sook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.148-149
    • /
    • 2021
  • Food waste has increasingly become a global issue of concern among the researchers and policymakers due to its significant environmental and economic impacts, and other associated unsustainable use of resources, including water resources. While food wastage occurs at each stage of the supply chain with food loss at the upstream and food waste at the downstream, the impacts of food waste occurring at the consumption side are enormous due to the accumulated added values. In this study, the embedded water resources, greenhouse gas emissions, and economic loss of household food waste were investigated. The primary granular data of household food waste was collected through direct sampling from 218 selected households of the Buk-gu community in Daegu, South Korea from July 2019 to May 2020. The water footprint, which was based on the water footprint concept, i.e., indirect water use, and GHG emission potential factor for each of the food items were adopted from the literature, while the retail prices and disposal cost were used to assess the economic cost of wasted food items. The water footprint, GHG emission associated with environmental impacts, and the economic cost of 42 major identified wasted food items were conducted. The findings showed that an average of 0.73 ± 0.06 kg/household/day edible food waste was generated among the sampled households, with leafy vegetable, watermelon, and rice responsible for 10, 9, and 4%, respectively, of the total weight of the 42 food wasted items. The water footprint and environmental impact of the household food waste resulted in 0.46 ± 0.04 m3 and 0.71±0.05 kg CO2eq, respectively. Beef, pork, poultry, and rice accounted for 52, 9, 5, and 4% of the total water footprint, while beef, pork, rice, tofu/cheese had 52, 8, 6, and 6% of the total emissions, respectively, embedded in the food wasted. Furthermore, the average estimated economic cost associated with wasted food items was 3855.93±527.27 Korean won, with beef, fish, and leafy vegetable responsible for 21, 13, and 10%, respectively, of the total economic cost. A combined assessment using water-environmental-economic nexus indicated that animal-based food had the highest footprint impacts, with beef, pork, and poultry indicating high indices of 0.3, 0.08, and 0.06 respectively, on a scale of 0 to 1, compared to corn and lettuce with lowest impacts of 0.02. Other food items had moderate impact values ranging from 0.03 to 0.05. This study, therefore, provides insight into the enormity of environmental and economic implications of household food waste among Korean households.

  • PDF

2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석 (Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine)

  • 하준;김용래;박철웅;최영;이정우
    • 한국가스학회지
    • /
    • 제27권3호
    • /
    • pp.52-58
    • /
    • 2023
  • 지구 기상이변에 대해 탄소중립의 중요성이 대두됨에 따라 무탄소 연료인 수소의 에너지원으로서의 활용도 역시 증대되고 있다. 일반적으로 수소는 연료전지(FC, Fuel Cell)에 활용되고 있으나, 이는 연소를 기반으로 하는 내연기관(ICE, Internal Combustion Engine)에도 활용될 수 있다. 특히 연료전지만으로 수소 활용 및 인프라 확장이 어려운 때에 이미 생산 측면이나 공급 측면에서 인프라가 기 구축되어 있는 내연기관은 수소 에너지 저변 확대에 큰 도움을 줄 수 있다. 다만 수소를 연소기반으로 활용할 경우 고온에서 공기 중 질소가 산소와 반응하여 유해배기물질인 질소산화물(NOx, Nitrogen Oxides)이 생성될 수 있는 단점은 존재한다. 특히 냉간 (Cold Start) 운전 영역시 포함될 EURO-7 배기규제의 경우 워밍업(Warm-up) 과정에서 발생하는 배기배출물의 저감을 위한 노력도 필요하다. 따라서 본 연구에서는 2 L급 수소 직접분사방식 전기점화 (SI, Spark Ignition) 엔진을 활용하여 냉각수를 상온에서 88 ℃로 워밍업하는 과정에서 질소산화물 및 연료소모율의 변화 특성을 살펴보았다. 특히 수소는 기존의 가솔린, 천연가스, 액화석유가스(LPG, Liquified Petroleum Gas)와 달리 가연범위(Flammable range)가 넓기 때문에 공기과잉률(Excessive air ratio)을 희박하게 조절할 수 있다는 장점이 있다. 이에 본 연구에서는 워밍업하는 과정에 있어서 공기과잉률을 1.6/1.8/2.0으로 변화하여 그 결과를 분석하였다. 본 실험의 결과는 워밍업 시 공기과잉률이 희박해질수록 시간당 질소산화물의 배출이 적고, 열효율도 상대적으로 높으나 최종 온도까지 도달 시간이 길어짐에 따라 누적 배출량 및 연료소모율은 악화될 수도 있음을 시사한다.