• Title/Summary/Keyword: Direct Measuring Method

Search Result 292, Processing Time 0.029 seconds

A Study on the Impact Load Quantification of the Jaw Crusher (쇄석기의 충격하중 정량화에 대한 연구)

  • Hong, Sung Ju;Yang, Hae Jeong
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • Jaw crusher is a device that breaks rock collected from mines or quarries to produce aggregates of the size desired by user. A representative method for measuring load is to measure them by attaching force sensors directly to the part where the load is generated. However, the direct method has many limitations such as high-impact loads generation in equipment or space constraints, sensor capacities and costs. Therefore, Transfer Path Analysis (TPA) was used to indirectly measure impact loads by attaching acceleration sensors. In this study, both direct and TPA methods were used to measure the impact load of Jaw crusher. This study finally quantifies the impact of the load generated by the Jaw crusher using direct method and TPA method, and comparing the impact load measured calculated the derive the error rate.

Application of qDVC Method for Measuring Viable Cells in Lakes (호수 생태계에서 살아있는 세균을 측정하기 위한 qDVC 방법의 적용)

  • Kim, Mi-Ree;Seo, Eun-Young;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.205-209
    • /
    • 2006
  • For measuring the viable cells in lakes, quantitative direct viable count (qDVC) method is applied. In the qDVC process, the final concentration of glycine is fixed as 2%. For confirming the effectiveness of qDVC for enumerating the viable cells, the viable bacterial numbers were measured by plate count, CTC reduction method and qDVC method at 5 different lakes. Among these 3 methods, the bacterial numbers by qDVC is $2.4{\sim}6.0$ times higher than those by the other 2 methods. And by the qDVC method, the viable cells were easily discriminated from dead or dormant cells.

Estimation of Nurse Staffing Based on Nursing Workload with Reference to a Patient Classification System for a Intensive Care Unit (중환자의 중증도에 따른 적정 간호인력 수요 산정)

  • Park, Young Sun;Song, Rhayun
    • Journal of Korean Critical Care Nursing
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • Purpose: This study aimed to estimate the appropriate nurse staffing ratio in intensive care units (ICUs) by measuring nursing workload based on patient's severity and needs, using the Korean Patient Classification System for critical care nurses. Methods: The data were collected from January 18 to February 29, 2016 using a standardized checklist by observation or self-report. During the study period, 723 patients were included to be categorized from I to IV using the patient classification system. Measurement of total nursing workload on a shift was calculated in terms of hours based on the time and motion method by using tools for surveying nursing activities. The nursing activities were categorized as direct nursing care, indirect nursing care, and personal time. Total of 127 cases were included in measuring direct nursing time and 18 nurses participated in measuring indirect and personal time. Data were analyzed using descriptive statistics. Results: Two patients were classified into Class I (11.1%), 5 into Class II (27.8%), 9 into Class III (50%), and two into Class IV (11.1%). The amount of direct nursing care required for Class IV (513.7 min) was significantly more than that required for Class I (135.4 min). Direct and indirect nursing care was provided more often during the day shift as compared to the evening or night shifts. These findings provided the rationale for determining the appropriate ratio for nursing staff per shift based on the nursing workload in each shift. Conclusions: An appropriate ratio of nurse staffing should be ensured in ICUs to re-arrange the workload of nurses to help them provide essential direct care for patients.

  • PDF

Measuring Farmers' Willingness to Accept of Direct Payment for Increasing Public Benefit (공익기능 증진 직접지불의 농가수용의사금액 측정)

  • Kim, Se-Hyuk;Chae, Hong-Gi;Kim, Tae-Kyun
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.3
    • /
    • pp.273-288
    • /
    • 2020
  • The purpose of this study is to estimate farmers' willingness to accept (WTA) of direct payment for increasing public benefit using the contingent valuation method. The double-bounded dichotomous choice and the open-ended question were used to measure WTAs for basic form and optional form, respectively. The results show that WTA for basic form was inversely proportional to the acreage. WTAs were KRW 1,694,001 with 2 ha or less, KRW 1,617,789 with over 2 ha~6 ha, and KRW 1,562,977 with over 6 ha. The results also indicate that WTAs for optional form are similar to payments of agricultural environmental conservation program except physical (chemical) control of pests and weed. The results of this study can provide useful information for the establishment of direct payment for increasing public benefit.

The Direct Extrusion of Copper Clad Aluminum Composite Materials by Using the Conical Dies (원추형 다이를 이용한 Cu-Al 층상 복합재료의 직접압출)

  • Yun, Yeo-Gwon;Kim, Hui-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1541-1550
    • /
    • 2001
  • This paper describes experimental investigations in the direct extrusion of copper clad aluminum rods through conical dies. Composite materials consist of two or more different material layers. Copper clad aluminum composite materials are being used fur economic and structural purposes and the development of an efficient production method of copper clad aluminum composite material rods by extrusion is very important, It is necessary to know the conditions in which successful uniform extrusion ,and sound cladding may be carried out without any defects in the direct extrusion. There are several variables that have an influence on determining a sound clad extrusion. In order to investigate the influence of these parameters on the hot direct extrudability of the copper clad aluminum composite material rods, the experimental study have been performed with various extrusion temperatures, extrusion ratios and semi-cone angles of die. Subsequently, the microscopic inspection of interface bonding is carried out for extruded products. By measuring hardness, along extrusion way of products, a variation of hardness has been discussed. Proportional flow state has been considered by measuring radius ratio of Cu sleeve and Al core before and after extrusion.

Numerical simulation of compressive to tensile load conversion for determining the tensile strength of ultra-high performance concrete

  • Haeri, Hadi;Mirshekari, Nader;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • In this study, the experimental tests for the direct tensile strength measurement of Ultra-High Performance Concrete (UHPC) were numerically modeled by using the discrete element method (circle type element) and Finite Element Method (FEM). The experimental tests used for the laboratory tensile strength measurement is the Compressive-to-Tensile Load Conversion (CTLC) device. In this paper, the failure process including the cracks initiation, propagation and coalescence studied and then the direct tensile strength of the UHPC specimens measured by the novel apparatus i.e., CTLC device. For this purpose, the UHPC member (each containing a central hole) prepared, and situated in the CTLC device which in turn placed in the universal testing machine. The direct tensile strength of the member is measured due to the direct tensile stress which is applied to this specimen by the CTLC device. This novel device transferring the applied compressive load to that of the tensile during the testing process. The UHPC beam specimen of size 150 × 60 × 190 mm and internal hole of 75 × 60 mm was used in this study. The rate of the applied compressive load to CTLC device through the universal testing machine was 0.02 MPa/s. The direct tensile strength of UHPC was found using a new formula based on the present analyses. The numerical simulation given in this study gives the tensile strength and failure behavior of the UHPC very close to those obtained experimentally by the CTLC device implemented in the universal testing machine. The percent variation between experimental results and numerical results was found as nearly 2%. PFC2D simulations of the direct tensile strength measuring specimen and ABAQUS simulation of the tested CTLC specimens both demonstrate the validity and capability of the proposed testing procedure for the direct tensile strength measurement of UHPC specimens.

An Experimental Study on Physical Properties and Water Repellent Performance of Cement Mortar According to Mixing Method of Water Repellent (발수제 혼입 방법에 따른 시멘트 모르타르의 물리적 특성 및 발수 성능에 관한 실험적 연구)

  • Kim, Wan-Su;Yang, Hyun-Min;Kim, Yeung-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.99-100
    • /
    • 2019
  • Water repellent and waterproofing agents fail to act work properly if cracks or detachment occurs outside. The method of making mortar was tested by classifying it into two methods: direct water-repellent put in concrete and water-repellent spray to sand method. It was found that the compressive strength was decreased as the amount of water repellent was increased. As a result of measuring the contact angle, all of the specimens were hydrophobic. The spray method showed greater water repellent effect than the direct mixing method.

  • PDF

Measuring method of electric resistance using thermoelectric properties of module (열전모듈의 발전특성을 이용한 전기저항 변화 측정)

  • Woo, Byung-Chul;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1332-1334
    • /
    • 2002
  • Thermoelectric generation is the direct energy conversion method from heat th electric power. The conversion method is a very useful utilization of waste energy because of its possibility using a thermal energy below $150^{\circ}C$ This research objective is th establish the thermoelectric technology on a optimum system design method and efficiency, and cost effective thermoelectric element in order to extract the maximum electric power from a wasted hot water. This paper is considered in manufacturing a thermoelectric generator and measuring of electric resistance of module a thermoelectric modules. It was found that the electric resistance of thermoelectric modules was defined as a temperature functions. The relationship between electric resistance and temperature characteristics can be a analogized as function of electric current.

  • PDF

A Study on the Displacement Measuring Method of High-rise Buildingas using LiDAR (라이다를 이용한 고층 건물의 변위 계측 기법에 관한 연구)

  • Lee Hong-Min;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.151-158
    • /
    • 2006
  • Structural health monitoring is concerned with the safety and serviceability of the users of structures, especially for the case of building structures and infrastructures. When considering the safety of a structure, the maximum stress in a member due to live load, earthquake, wind, or other unexpected loadings must be checked not to exceed the stress specified in a code. It will not fail at yield, excessively large displacements will deteriorate the serviceability of a structure. To guarantee the safety and serviceability of structures, the maximum displacement in a structures must be monitored because actual displacement is a direct assessment index on its stiffness. However, no practical method has been reported to monitor the displacement, especially for the case of displacement of high-rise buildings because of not to easy accessive. In this paper, it is studied displacement measuring method of high-rise buildings using LiDAR The method is evaluated by analyzing accuracy of measured displacements for existing building.

  • PDF

Development of Small Size Coriolis Mass Flowmeter (소형 코리올리 질량 유량계의 개발)

  • Lim Ki-Won;Ji Jueng-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.497-504
    • /
    • 2006
  • A Coriolis mass flowmeter(CMF), which has U-Shaped unique measurins tube was developed fo. direct mass flow measurement. In order to convert the time difference between two measuring tubes motion into mass flowrate and flow quantity, a signal processing circuit, as a part of CMF, was also developed. The CMF was designed as the 15 mm nominal diameter of pipe connection and the 8 mm stainless steel(sus 316) pipe was used for measuring tube. To maximize the flow signal(time difference) from the measuring tubes, the natural frequency of measuring tube was adjusted as 220 Hz, which is same as the frequency of exciter. The maximum displacement at the end of the measuring tube was measured as 0.05 mm and the maximum time difference between two measuring tubes was observed as $20{\mu}s$, which was proper for discrimination and measuring range of CMF. The developed CMF was tested against the gravimetric flowmeter calibrator in the range of 3 kg/min and 30 kg/min. The results showed that the CMF has good linearity and repeatability in the tested flow range. Large size of CMF base on the current study experience will be developed.