• 제목/요약/키워드: Direct Injection Engine

검색결과 449건 처리시간 0.022초

디젤기관에서 다종 함산소연료 첨가에 의한 배기배출물 특성에 관한 실험적 연구 (An Experimental Study on Exhaust Emission Characteristics by Various Oxygenated Additives in Diesel Engine)

  • 오영택;최승훈
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.101-110
    • /
    • 2002
  • In this paper, the effects of oxygen component in blended fuel on the exhaust emissions have been investigated far direct injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for th? commercial diesel fuel and oxygenated blended fuels which have three kinds of fuels and various mixed rates. And, it was tried to analyze not only total hydrocarbon but individual hydrocarbons(C$_1$∼ C$\_$6/) in exhaust gases using gas chromatography to seek the reason far remarkable reduction of smoke emission on various oxygenated fuels. This study carried out by comparing the chromatogram with diesel fuel and diesel fuel blended DGM(diethylene glycol dimethyl ether), MTBE(methyl tart-butyl ether) and EGBE(ethylene glycol mono-n-butyl ether). The results of this study show that individual hydrocarbons as well as total hydrocarbon of oxygenated fuel are reduced remarkably compared with commercial diesel fuel.

농업용 디젤기관 대체연료로서 바이오디젤유와 함산소제 적용시의 배기배출물 특성 (Characteristics of Exhaust Emission by the Application of Biodiesel Fuel and Oxygenates as an Alternative Fuel in an Agricultural Diesel Engine)

  • 최승훈;오영택;서정덕
    • Journal of Biosystems Engineering
    • /
    • 제31권6호
    • /
    • pp.457-462
    • /
    • 2006
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions from diesel engine are recognized main cause which influenced environment strong. In this study, the potential possibility of biodiesel fuel and oxygenates additives (dimethoxy methane) was investigated as an alternative fuel for a naturally aspirated direct injection diesel engine. The smoke emission of blending fuel (biodiesel fuel 90vol-% + DMM 10vol-%) was reduced in comparison with diesel fuel, that is, it was reduced approximately 70% at 2500 rpm, full load. But, power, torque and brake specific energy consumption didn't have no large differences. But, NOx emissions from biodiesel fuel and DMM blended fuel were increased compared with commercial diesel fuel.

직접분사식 디젤기관의 연소실내 공기유동강화가 연소과정에 미치는 영향 (The Effect of Combustion Process by Intensifying the Air Flow in Combustion Chamber of D.I. Diesel Engine)

  • 방중철
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.153-159
    • /
    • 2007
  • The performance of a direct-injection type diesel engine often depends on the strength of air flow in the cylinder, shape of combustion chamber, the number of nozzle holes, etc. This is of course because the process of combustion in the cylinder was affected by the mixture formation process. In the present paper, high speed photography was employed to investigate the effectiveness of holes penetrated from the bottom of cavity wall to piston crown for some more useful utilization of air. The holes would function to improve mixing of fuel and air by the increase of air flow in the cylinder. The results obtained are summarized as follows, (1) Activated first of the combustion by shorten of ignition timing and rapid flame propagation (2) Raised the combustion peak pressure, more close to TDC the formation timing of peak pressure.

농업용 직접분사식 디젤기관에서 함산소연료 적용시 배기배출물 특성 연구 (A Study on Characteristics for Exhaust Emission with Oxygenated Fuel in an Agricultural DI Diesel Engine)

  • 최승훈;오영택;서정덕
    • Journal of Biosystems Engineering
    • /
    • 제32권5호
    • /
    • pp.279-283
    • /
    • 2007
  • In this study, the potential possibility of oxygenates on di-ether group (DBE, dibutyl ether) was investigated as an additives for an agricultural direct injection diesel engine. It tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenates additives blending fuel which has four kinds of mixed ratio. The smoke emission of blending fuel (diesel fuel 80 vol-% + DBE 20 vol-%) was reduced in comparison with diesel fuel, that is, it was reduced approximately 26% at 2500 rpm, full load. And, power, torque and brake specific energy consumption didn't have large differences. But, NOx emission of blended fuel was increased compared with commercial diesel fuel.

직접 분사식 디젤기관에서 바이오디젤유의 적용에 관한 실험적 연구 (An Experimental Study on Application of Biodiesel Fuel in Direct Injection Diesel Engine)

  • 오영택;최승훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.818-823
    • /
    • 2001
  • Because the exhaust emissions from automobiles are increased, our environment is faced with very serious problems related to the air pollution in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong. Lots of researcher have been attempted to develop various alternative fuel on purpose to reduce these harmful emissions. In this study, the potential possibility of esterfied rice bran oil which is a kind of biodiesel fuel was investigated as an alternative fuel for diesel engine. And, we tried to analysis not only total hydrocarbon but hydrocarbon components from $C_1$ to $C_6$ in exhaust gas using gas chromatography to seek the reason for remarkable reduction of exhaust emission. Individual hydrocarbon$(C_1\simC_6)$ as well as total hydrocarbon of biodiesel fuel is reduced remarkably than that of diesel fuel in this experiment.

  • PDF

예연소실식 디젤엔진의 분구 형상 변화에 따른 연소 특성 연구 (Study on Combustion Characteristics of Pre-combustion Chamber Type Diesel Engine with Different Throat Shape)

  • 최종휘;이승필;박성욱
    • 한국분무공학회지
    • /
    • 제22권3호
    • /
    • pp.116-121
    • /
    • 2017
  • Pre-combustion chamber type indirect diesel engines have different combustion characteristics compared with those of common rail direct injection engine. The CONVERGE, specific engine CFD program, was used to simulate hollow cone spray model and combustion. The air-fuel mixture flow propagating from pre-combustion chamber to cylinder was concentrated at top half and center of the pre-combustion chamber throat. Stronger mixture flow was formed at smaller and longer throat cases. As a result, thermal efficiency and fuel consumption were improved for modified throat shape and the soot emission was also reduced.

선박디젤기관에서 바이오디젤연료의 연소특성에 대한 실험적 연구 (An Experimental Study on Combustion Characteristics of Biodiesel Fuel in Marine Diesel Engine)

  • 조상곤
    • 동력기계공학회지
    • /
    • 제19권3호
    • /
    • pp.29-35
    • /
    • 2015
  • Environmental pollution is produced by consumption of fossil fuel, therefore alternative fuels is interested for development of new energy resources and reduction of exhaust emissions for air pollution prevention. Biofuels are produced from new vegetable oil and animal fat, may be used as fuel without change of engine structure in diesel engine. In this paper, the test results on specific fuel consumption, combustion characteristics of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine, especially this biodiesel was produced from biodiesel fuel at our laboratory by ourselves. This study showed that specific fuel consumption is increased slightly, on the other hand cylinder pressure, rate of pressure rise, rate of heat release and soot were decreased slightly in the case of biodiesel blends than neat diesel oil.

VGT가 디젤엔진의 부분부하 성능에 미치는 영향 (Effects of VGT on Part Load Performance of Diesel Engine)

  • 최권식;송성진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.680-686
    • /
    • 2004
  • Recently, the application of variable geometry turbocharger (VGT) to the high speed direct injection (HSDI) diesel engine has gained more and more interest in automotive industry. A steady state experimental investigation has been undertaken on a 1.5L HSDI diesel engine to verify the benefits of VGT comparing to the standard engine having a waste gate turbocharger (WGT). Specifically, part load performances (e.g., fuel economy and emission) have been investigated under various vane angles of the VGT. The results show that the real exhaust gas recirculation (EGR) rate as well as the pumping loss is very important to improve break specific fuel consumption (BSFC). It was previously known that the pumping loss only is a main parameter. In addition, the trade-off relationship between BSFC and NOx according to boost pressure, and the decreasing tendency of NOx with increasing real EGR rate have been verified. 1-D numerical analysis also has been performed, and the numerical results are in good agreement with experimental results.

  • PDF

바이오디젤유를 사용하는 간접분사식 디젤기관의 내구 및 배기 특성 (The Durability and Exhaust Emission Characteristics of an IDI Diesel Engine Using Biodiesel Fuel)

  • 유경현;오영택
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.115-122
    • /
    • 2006
  • To evaluate the durability characteristics of in-direct injection diesel engine using BDF 20(a blend of 20% biodiesel fuel and 80% diesel fuel in volume), an IDI diesel engine used to commercial vehicle was operated on BDF 20 for 300 hours. Engine dynamometer testing was completed at regularly scheduled intervals to investigate the combustion characteristics, engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis. From the results, the combustion variations such as the combustion maximum pressure($P_{max}$) and the crank angle at which this maximum pressure occurs(${\Theta}_{Pmax}$) were not appeared during long-time dynamometer testing. Also, BSFC with BDF 20 resulted in lower than with diesel fuel. The peak pressure with BDF 20 was higher than that with diesel fuel due to the oxygen content in BDF. And, BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions with a little increase of oxides of nitrogen than diesel fuel. It was concluded that there was no unusual deterioration of the engine, or any unusual change in exhaust emissions during the durability test of an IDI diesel engine using BDF 20.

벽면 형상에 따른 중공 원추형 분무의 벽 충돌 과정 모델링 (Modeling of Wall Impingement Process of Hollow-Cone Fuel Spray according to Wall Geometry)

  • 심영삼;최경민;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3467-3472
    • /
    • 2007
  • The effects of the wall geometry on the spray-wall impingement process of a hollow-cone fuel spray emerging from a high-pressure swirl injector of the Gasoline Direct Injection (GDI) engine were investigated by means of a numerical method. The ized Instability Sheet Atomization (LISA) & Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model for spray atomization process and the Gosman model were applied to model the atomization and wall impingement process of the spray. The calculation results of spray characteristics, such as a spray development process and a radial distance after wall impingement, compared with the experimental ones by the Laser Induced Exciplex Fluorescence (LIEF) technique. It was found that the radial distance of the cavity angle of 90$^{circ]$ after wall impingement was the shortest and the ring shaped vortex was generated near the wall after spray-wall impingement process.

  • PDF