• Title/Summary/Keyword: Direct Injection Engine

Search Result 449, Processing Time 0.025 seconds

Combustion Characteristics of Dimethyl Ether (DME) and Diesel Fuel Using a Common-rail Fuel Injection System (커먼레일 분사장치를 이용한 Dimethyl Ether와 디젤연료의 연소특성)

  • Choi, Wook;Lee, Ju-Kwang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.30-37
    • /
    • 2004
  • The combustion and emission characteristics of a direct injection CI engine fuelled with DME(Dimethyl Ether) and diesel fuel were compared at idle engine speed(800 rpm) with various injection parameters. An optical single cylinder diesel engine equipped with a common-rail fuel injection system was constructed to investigate combustion processes of DME and diesel fuel. The combustion images were recorded with a high-speed video camera system. The results demonstrated that the DME-fuelled engine was superior to the conventional diesel engine in terms of engine performance and emissions. The optimal injection timing of DME was located around IDC(Top Dead Center), which was roughly same as that of diesel fuel. As the injection timing was advanced much earlier than TDC, NOx (Nitric Oxides) level increased considerably. NOx emission of DME was equal or a little higher than that for diesel fuel at the same injection pressure and timing because of higher evaporation characteristics of DME. Throughout all experimental conditions, DME did not produce any measurable smoke level.

A Study of Downsizing Effect on Turbocharged LPG Direct Injection(T-LPDI) Engine with Startability Improvement by Optimization of Fuel Control System (LPG 직분사 엔진의 다운사이징 효과 및 시동성 개선을 위한 연료 제어시스템 최적화에 관한 연구)

  • Lim, Jongsuk;Kim, Dowan;Park, Hanyong;Song, Jinoh;Han, Junghwan;Yook, Chulsoo;Park, Seongmin;Shin, Yongnam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.619-626
    • /
    • 2016
  • The new 1.4 L turbocharged LPG direct injection (T-LPDI) engine is presented in this paper to improve the fuel efficiency of the vehicles installed with the 2.0 L LPG port fuel injection (LPI) engine, while maintaining the performance as a downsizing concept for the new engine platform development. Firstly, the return type high pressure LPG fuel supply system is designed and mounted in the new 1.4 L T-LPDI engine. As a result, this new engine shows a much better WOT performance and approximately 8 % of improved fuel economy level, as compared to the 2.0 L LPI vehicle. Secondly, the LPDI engine specific optimized design for high pressure fuel components and fuel injection control strategies are proposed and evaluated in order to overcome the restartability problem in a heat-soaked condition called the vapor lock phenomenon. Consequently, these experimental results illustrate a great potential for the developed 1.4 L T-LPDI engine as a possible substitute for the 2.0 L LPI engine.

Injection Feature and Engine Performance Improvement of the Direct Diesel Fuel Injection System (직접 디젤 연료분사계의 분사 특성과 기관 성능 개선에 관한 연구)

  • Yoon, Cheon-Han;Kim, Kyung-Hoon
    • Journal of ILASS-Korea
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • This study has focused on using fuel injections as variables for measuring performance and reducing exhaust gas in turbo-charger diesel engine. In experiments, we changed nozzle hole diameter, diameter of an injection pipe, and injection timing as variable. The results show that torque. fuel consumption and smoke are reduced as nozzle hole diameter decreases, while NOx increases. When the diameter of injector is reduced, torque, fuel consumption and smoke are deteriorated, but NOx is decreased. In addition, when the time for injection is advanced. torque, fuel consumption and smoke are improved, but the density of NOx is increased.

  • PDF

The Effect of Fuel Injection Strategy on Combustion and Nano-particle Emissions in a Small Diesel Engine (소형디젤기관의 연료분사조건에 따른 연소 및 미세입자 배출 특성에 관한 연구)

  • Kang, Seok-Ho;Lee, Seang-Wock;Eom, Dong-Seop
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.98-106
    • /
    • 2014
  • Emission standards for passenger diesel engines are becoming more and more stringent. Especially, Europe started the regulation of nano-particles from 2011 with EURO 5b. The objective of this study is to investigate the effect of fuel injection strategy on combustion and nano-particle emission in a small diesel engine. In this study, we conducted combustion analysis and measured both the weight of PM and number of nano-particels. At first, the optimum injection timing was determined with fixed engine operating conditions, such as engine speed, load, and fuel injection quantity. After that, the injection timing was controlled, and the effect of pilot injection was investigated. The number of nano-particles increased as engine load decreases, and it increased up to 10 times depending on the change of injection timing. The weight of PM emissions was increased at low load, and the PM emissions increased with increasing the number of pilot injections.

A Study on Design of High strength Cylinder Block about Common Rail Direct Injection Diesel Engine for Small Tractor (소형 트랙터용 전자제어 직접 분사식 디젤 엔진 고강도 실린더 블록의 설계에 관한 연구)

  • Seock-Ju Nam;Sung-Ho Park;Gue-Tae Kim;Gwi-Nam Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.649-656
    • /
    • 2023
  • Recently, global warming has become severe, and regulation is established for carbon savings each field. its regulation is applied to various fields using IC engine such as automobile, ship, agricultural machine. Therefore engine block applied Common Rail Direct Injection(CRDI) technology, that carry out thermal-structure analysis to examine design. The thermal load about 900℃ by explosion was applied in cylinder. And pressure about 9 MPa(90 Bar) was applied to structure analysis. As a result, it was the highest at 185.99℃ at the top of cylinder. Static-structure analysis applied thermal load, that was shown maximum equivalent stress at 142.59 Mpa and Maximum principal stress 145.03 MPa, Minimum principal stress -149 MPa. When compare analysis results to material property, it design is safety structurally.

Study on the Particulate Matter Filtration Characteristics of the Metal Foam Particulate Filter (메탈 폼 입자 필터의 GDI 엔진 입자상 물질 정화 특성에 대한 연구)

  • Jang, Wonwook;Myung, Cha-Lee;Lee, Jeongmion;Park, Simsoo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.347-348
    • /
    • 2014
  • After-treatment system for gasoline direct injection engines should be considered due to the regulation standard for particle number emitted from spark ignition engine vehicles. A metal foam particulate filter, which is thought to be more proper for gasoline engines for its unique filtration and heat resistance characteristics, has been evaluated via engine dynamometer tests.

  • PDF

A Study on Combustion and Emission Characteristics of Diesel-DME Blended Fuels Using Pilot Injection in DICI Engine (직접분사식 압축착화엔진에서 Pilot분사에 따른 Diesel-DME 혼합연료의 연소 및 배기특성에 관한 연구)

  • Jeong, Jaehoon;Lim, Ocktaeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.55-64
    • /
    • 2014
  • This work was investigated on pilot injection strategy of blended fuels(Diesel-DME) for combustion and emissions in a single cylinder direct injection compression ignition engine. Diesel and DME were blended by the method of weight ratio. Weight ratios for diesel and DME were 95:05 and 90:10 respectively. dSOI between main and pilot injection timing was varied. A total amount of injected fuels(single injection) was adjusted to obtain the fixed BMEP as 4.2 bar in order to compare with the fuel conditions. Also, the amount of pilot injection fuel was varied by 5%, 10% and 20% of total injection fuel. The engine was equipped with common rail and injection pressure is 700 bar at 1200 rpm. As a result, when mixing ratio increase, indicated thermal efficiency was increased in comparison with DD 100 and CO, THC and smoke were lower than DD 100. The influence of reducing NOx by pilot injection was more effective than DD 100. When pilot injection quantity increase, abrupt increase of NOx was occured at pilot injection quantity of 20%.

A Study on the Development of Hydrogen Fueled Engine : Heat Loss of Direct Injection Hydrogen Fueled Engine (수소기관 개발을 위한 기초연구(직접분사식 수소기관의 열손실))

  • Nam, Seong Woo;Lee, Jong Tai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.5 no.2
    • /
    • pp.111-119
    • /
    • 1994
  • Analysis of heat loss is needed to achieve the high performance and high efficiency in hydrogen engine. So, cooling losses at each part of the direct injection hydrogen fueled engine were measured to evaluate the behavior and distribution of heat loss. Unsteady instantaneous temperature and heat flux at cylinder head were measured by use of instantaneous temperature prove. And these results were compared with those of gasoline engine.

  • PDF

The Impact of Ethanol Contents on Combustion Performance and Nano-particle Emission Characteristics from Spark Ignition Direct Injection (SIDI) Engine (에탄올 함량비가 SIDI 엔진의 연소성능과 입자상물질 배출특성에 미치는 영향에 대한 연구)

  • Cho, Jaeho;Myung, Cha-Lee;Park, Simsoo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.343-344
    • /
    • 2014
  • Ethanol as fuel of Spark Ignition Direct Injection (SIDI) engine has become a feasible alternative due to its better anti-knock characteristics and lower nano-particle emission level. There are a number of studies on the emission characteristics from SIDI engine fuelled with various ethanol contents. In general, increase of ethanol contents leaded to decrease of nano-particle discharge, but the other researches showed reversed result at a singular range of ethanol contents. This study focused on the engine combustion performance and nano-particle emission characteristics of SIDI engine fuelled with intermediate ethanol contents.

  • PDF

Transient Flow Analyses of the Intake and Compression Processes In a Direct Injection Engine (직분식 디젤엔진의 흡입$\cdot$압축 행정시 엔진 실린더 내의 비정상 유동 해석)

  • Joo K. J.;Park H. K.
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.17-24
    • /
    • 2002
  • The transient flow fields in a direct injection engine was analyzed by using the STAR-CD CFD code doting the intake/compression processes. The analyses were focused on the computation grid generation by using the IC3M code which is a pre-developed and especially well adapted for the analyses of internal combustion engine. The results showed that the used grid generation technique was well suited for the flow analyses on any internal combustion engine.