• Title/Summary/Keyword: Direct Formic Acid Fuel Cell

Search Result 15, Processing Time 0.021 seconds

Evaluation of Cell Components in Direct Formic Acid Fuel Cells (직접 개미산 연료전지의 구성요소 평가에 대한 연구)

  • Jung, Won Suk;Yoon, Sung Pil;Han, Jonghee;Nam, Suk Woo;Lim, Tae-Hoon;Oh, In-Hwan;Hong, Seong-Ahn
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.362-367
    • /
    • 2009
  • Recently, the use of formic acid as a fuel for direct liquid fuel cells has emerged as a promising alternative to methanol. In the work presented herein, we evaluated direct formic acid fuel cells(DFAFCs) with various components under operating conditions, for example, the thickness of the proton exchange membrane, concentration of formic acid, gas diffusion layer, and commercial catalyst. The thickness of the proton exchange membrane influenced performance related to the fuel cross-over. To optimize the cell performance, we investigated on the proper concentration of formic acid and catalyst for the formic acid oxidation. Consequently, membrance-electrode assembly(MEA) consisted of $Nafion^{(R)}$-115 and the Pt-Ru black as a anode catalyst showed the maximum performance. This performance was superior to the DMFCs' one.

Performance Analysis of The Direct Formic Acid Fuel Cell using A New Catalysis Coating Method (새로운 촉매 코팅법을 이용한 직접 개미산 연료전지의 성능 분석)

  • Kwon, Y.;Kwon, B.;Kim, J.;Kim, Y.Y.;Jung, W.;Han, J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.29-32
    • /
    • 2008
  • The cell performance of direct formic acid fuel cell (DFAFC) having catalysts coated by electrospray was analyzed. Pd catalyst was used for the anode electrode and Pd catalyst loading amount and formic acid feed rate dependances of fuel cell performance were evaluated. When loading amount of Pd is in between 3mg/$cm^2$ and 7mg/$cm^2$ and formic acid feed rate is 5ml/min., 3mg/$cm^2$ sample showed better potential at 129 mA/$cm^2$ and power density due to difference in mass transfer limitation. However, when the feed rate is greater than 10ml/min., the opposite tendency was observed between 3mg/$cm^2$ and 7mg/$cm^2$ samples. The result was attributed to improvement in electrochemical reaction of the Pd. Based on the above results, In DFAFC including Pd catalyst that was coated by electrospray, 0.537V as the maximum potential at 129 mA/$cm^2$ was attained.

  • PDF

R & D Trends on Direct Formic Acid Fuel Cells (직접 개미산 연료전지의 연구동향)

  • Kwon, Yongchai;Han, Jonghee;Kim, Jinsoo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.583-591
    • /
    • 2008
  • Recently, as a demand for the portable device is surged, there are needs to develop a new fuel cell system for replacing the conventionally used secondary battery. For this purpose, it becomes important to develop direct formic acid fuel cell (DFAFC) that uses formic acid as a fuel. The formic acid can offer typical advantages such as excellent non-toxicity of the level to be used as food additive, smaller crossover flux through electrolyte, and high reaction capability caused by high theoretical electromotive force (EMF). With the typical merits of formic acid, the efforts for optimizing reaction catalyst and cell design are being made to enhance performance and long term stability of DFAFC. As a result, to date, the DFAFC having the power density of more than $300mW/cm^2$ was developed. In this paper, basic performing theory and configuration of DFAFC are initially introduced and future opportunities of DFAFC including the development of catalyst for the anode electrode and electrolyte, and design for the optimization of cell structure are discussed.

Characteristics of Plasma Blacks Used as an Electrode of Direct Formic Acid Fuel Cell

  • Park, Young-Sook;Choi, Jong-Ho;Han, Jong-Hee;Lim, Tae-Hoon;Beak, Young-Soon;Ju, Jeh-Beck;Shon, Tae-Won;Lee, Joong-Kee
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • Plasma carbon blacks of 20~30 nm diameter were synthesized by direct decomposition of natural gas using a hybrid plasma torch system with 50 kW direct current and 4 MHz of radio frequency. The insulating rector which inside diameter of 400 mm and length of 1500 mm, respectively was kept at 300~$400^{\circ}C$ during the preparation. The ultimate analysis of plasma carbon blacks reveals that the raw plasma carbon blacks contains a large quantity of volatile which is mainly consist of hydrogen. Therefore devolatilization of raw plasma carbon blacks were carried out at $900^{\circ}C$ for one hour under nitrogen atmosphere. The devolatilization leads to the decrease in electrical resistivity and surface oxygen functional groups of plasma carbon black significantly. In order to investigate the plasma carbon as a catalyst support, devolatilized plasma black at $900^{\circ}C$ (DPB) supported PtAu catalyst was synthesized by sodium boronhydride reduction method. Electrochemical measurements and direct formic acid fuel cell test indicated that catalytic activity of DPB supported PtAu catalyst for formic acid oxidation was similar to that of Vulcan XC-72 of commercial carbon black supported one.

  • PDF

Performance Evaluations of Direct Formic Acid Fuel Cell (DFAFC) using PdCu Catalysts Synthesized by Control in Amount of Ethylene Glycol (에틸렌글리콜 양 조절에 의해 제조된 팔라듐구리 촉매를 이용한 개미산연료전지 성능평가)

  • YANG, JONGWON;KIM, LAEHYUN;KWON, YONGCHAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.283-289
    • /
    • 2016
  • In this study, electrochemical characterizations of PdCu/C catalysts that are synthesized by modified polyol method are investigated. Most of all, amount of ethylene glycol (EG) that is used as main component for catalyst synthesis is mainly modulated to optimize synthetic condition of the PdCu/C catalyst, For evaluations about catalytic activity and performance of direct formic acid fuel cell (DFAFC), half cell and full cell tests are implemented. As a result, when amount of EG is 4M, catalytic activities of the PdCu/C catalyst such as peak current of formic acid oxidation and active surface area are best, while maximum power density of DFAFC using the optimized PdCu/C catalyst is better than that using commercial Pd/C (30 wt%) by 6%. Based on that, PdCu/C catalyst synthesized by modified polyol method plays a critical role in improving (i) catalytic activity for formic acid oxidation and (ii) DFAFC performance by employing as anodic catalyst.

Performance Enhancement by Adaptation of Long Term Chronoamperometry in Direct Formic Acid Fuel Cell using Palladium Anode Catalyst

  • Kwon, Yong-Chai;Baik, S.M.;Han, Jong-Hee;Kim, Jin-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2539-2545
    • /
    • 2012
  • In the present study, we suggest a new way to reactivate performance of direct formic acid fuel cell (DFAFC) and explain its mechanism by employing electrochemical analyses like chronoamperometry (CA) and cyclic voltammogram (CV). For the evaluation of DFAFC performance, palladium (Pd) and platinum (Pt) are used as anode and cathode catalysts, respectively, and are applied to a Nafion membrane by catalyst-coated membrane spraying. After long DFAFC operation performed at 0.2 and 0.4 V and then CV test, DFAFC performance is better than its initial performance. It is attributed to dissolution of anode Pd into $Pd^{2+}$. By characterizations like TEM, Z-potential, CV and electrochemical impedance spectroscopy, it is evaluated that such dissolved $Pd^{2+}$ ions lead to (1) increase in the electrochemically active surface by reduction in Pd particle size and its improved redistribution and (2) increment in the total oxidation charge by fast reaction rate of the Pd dissolution reaction.

A Research on Direct Formic Acid Fuel Cell (DFAFC) using Palladium Catalyst Synthesized by Polyol Method (폴리올 방법으로 합성된 팔라듐 촉매를 이용한 직접개미산연료전지에 대한 연구)

  • YANG, JONGWON;KIM, EUI HYUN;CHOI, MIHWA;KWON, YONGCHAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.227-233
    • /
    • 2015
  • In this study, we evaluate catalytic activity of Pd/C catalyst that is synthesized by modified polyol method. With such formed Pd/C is used as anodic catalyst for direct formic acid fuel cell (DFAFC) and performances of the DFAFC are measured to verify whether the new catalyst is effective for enhancing DFAFC performance and to determine optimal loadings of the Pd/C needed for obtaining best DFAFC performance. Pd particle distribution of the Pd/C catalyst is analyzed by TEM, while its catalytic activity is estimated by using cyclic voltammogram (CV) as measuring formic acid oxidation reaction and active surface area. As a result of that, the Pd/C catalyst synthesized by modified polyol shows better catalytic activity and DFAFC performance with small loading amount of Pd/C. When loading amount of Pd/C is $1.5mgcm^{-2}$, maximum power density of DFAFC adopting the catalyst is $122mWcm^{-2}$.

A Study on Reactions of Palladium Anode Catalyst in Direct Formic Acid Fuel Cells (개미산 연료전지에서 연료극 팔라듐 촉매의 반응에 대한 연구)

  • Han, Jong-Hee;Kim, Jin-Soo;Yoon, Sung-Pil;Nam, Suk-Woo;Lim, Tae-Hoon;Kwon, Yong-Chai
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.697-701
    • /
    • 2010
  • We investigate the cell performance and characteristics of a direct formic acid fuel cell (DFAFC) using palladium (Pd) as a catalyst for anode. Pd is deposited on the electrolyte using the "direct paint" method. From a continuous three time-test of the polarization curve of the DFAFC, it is found that the catalytic activity of Pd and the cell performance of DFAFC steadily degrade as the tests are proceeded. This behavior may be due to the deactivation of Pd by formate (COOH) and hydroxyl (OH) groups, which are electrochemically dissociated from formic acid solution. Estimations of the degradation, followed by reactivation in activity of Pd catalyst and DFAFC cell performance are implemented by linear voltage sweep tests going in both positive and negative directions. When the maximum voltage of 1.0 V versus DHE is applied to the cell while a linear voltage sweep test going in negative directions, the activity of Pd catalyst and the DFAFC cell performance recover by the rehabilitation in activity of the deactivated Pd.

Competitiveness of Formic Acid Fuel Cells: In Comparison with Methanol (포름산 연료전지의 경쟁력)

  • Uhm, Sunghyun;Seo, Minhye;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.123-127
    • /
    • 2016
  • Methanol fuel cells having advantages of relatively favorable reaction kinetics and higher energy density have attracted increasing interests as best alternative to hydrogen fuel cell because of H2 production, storage and distribution issues. While there have been extensive research works on developing key components such as electrocatalysts as well as their physicochemical properties in practical formic acid fuel cells, there have also been urgent requests for investigating which fuel sources will be more suitable for direct liquid fuel cells in future. In this mini-review, we highlight the overall interest and outlook of formic acid fuel cells in terms of electrocatalysts, fuel supply and crossover, water management, fuel cell efficiency and system integration in comparison with methanol fuel cells.

Characteristics of sPAES Membrane and sPEEK Membrane for Direct Formic Acid Fuel Cell (직접개미산 연료전지용 전해질막으로서 sPAES 막과 sPEEK 막의 특성)

  • Jeong, Jae-Hyeon;Song, Myung-Hyun;Chung, Hoi-Bum;Lee, Moo-Seok;Lee, Dong-Hoon;Chu, Cheun-Ho;Na, Il-Chai;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.690-694
    • /
    • 2015
  • Recently, direct formic acid fuel cells (DFAFC) among direct liquid fuel cells is studied actively. Economical hydrocarbon membranes alternative to fluorinated membranes for DFAFC's membrane are receiving attention. In this study, characteristics of sulfonated poly(ether ether ketone, sPEEK) and sulfonated poly(arylene ether sulfone, PAES) membranes were compared with Nafion membrane at DFAFC operation condition. Formic acid crossover current density of hydrocarbon membranes were lower than that of Nafion 211 fluorinated membrane. I-V performance of sPEEK MEA(Membrane and Electrode Assembly) was similar to that of Nafion 211 MEA due to similar membrane resistance each other. sPEEK MEA with low formic acid crossover showed higher stability compared with Nafion 211 MEA.