• Title/Summary/Keyword: Direct Energy Conversion

Search Result 176, Processing Time 0.028 seconds

Methanol Concentration Sensor by Using Pt dot Catalyst Electrode (Pt dot 촉매전극을 활용하여 제작한 메탄올 센서)

  • Yang, Jin-Seok;Park, Jung-Ho;Park, Moon-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.505-506
    • /
    • 2008
  • The direct methanol fuel cell (DMFC) is a promising power source for portable applications due to many advantages such as simple construction, compact design, high energy density, and relatively high energy-conversion efficiency. In this work, an electrochemical methanol sensor for monitoring the methanol concentration in direct methanol fuel cells was fabricated using a thin composite nafion membrane as the electrolyte. We have analyzed the I-V characteristic of the fabricated methanol sensor as a function of methanol concentration, catalyst electrode and platinum(Pt) dot.

  • PDF

Structural and component characterization of the B4C neutron conversion layer deposited by magnetron sputtering

  • Jingtao Zhu;Yang Liu;Jianrong Zhou;Zehua Yang;Hangyu Zhu;Xiaojuan Zhou;Jinhao Tan;Mingqi Cui;Zhijia Sun
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3121-3125
    • /
    • 2023
  • Neutron conversion detectors that use 10B-enriched boron carbide are feasible alternatives to 3He-based detectors. We prepared boron carbide films at micron-scale thickness using direct-current magnetron sputtering. The structural characteristics of natural B4C films, including density, roughness, crystallization, and purity, were analyzed using grazing incidence X-ray reflectivity, X-ray diffraction, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and scanning electron microscopy. A beam profile test was conducted to verify the practicality of the 10B-enriched B4C neutron conversion layer. A clear profile indicated the high quality of the neutron conversion of the boron carbide layer.

Ethanol Electro-Oxidation and Stability of Pt Supported on Sb-Doped Tin Oxide (안티몬 도핑된 주석 산화물에 담지된 백금 촉매의 에탄올 산화 반응 및 안정성 연구)

  • Lee, Kug-Seung;Park, Hee-Young;Jeon, Tae-Yeol;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.141-146
    • /
    • 2008
  • Electrocatalytic activities and stabilities of Pt supported on Sb-doped $SnO_2$ (ATO) were examined for ethanol oxidation reactions. Pt colloidal particles were deposited on ATO nanoparticles (Pt/ATO) and the prepared electrocatalysts were characterized by X-ray diffraction, transmission electron microscopy (TEM), and cyclic voltammetry. Electrochemical activity of the Pt/ATO for ethanol electro-oxidation was compared to those of Pt supported on carbon (Pt/C) and commercial PtRu/C. The activitiy of the Pt/ATO was much higher than those of the Pt/C and commercial PtRu/C. The Pt/ATO exhibited much higher electrochemical stabilities than the Pt/C in 0.5M ${H_2}{SO_4}$ and in 0.5M ${H_2}{SO_4}$/1M ${C_2}{H_5}OH$. According to TEM, the growth rate of Pt particles was lower in the Pt/ATO than it was in the Pt/C. The ATO nanoparticle appears to be a promising support material that promotes electrochemical reactions and stabilizes catalyst particles in direct ethanol fuel cell.

Nano-structured Carbon Support for Pt/C Anode Catalyst in Direct Methanol Fuel Cell

  • Choi Jae-Sik;Kwon Heock-Hoi;Chung Won Seob;Lee Ho-In
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.117-121
    • /
    • 2005
  • Platinum catalysts for the DMFC (Direct Methanol Fuel Cell) were impregnated on several carbon supports and their catalytic activities were evaluated with cyclic voltammograms of methanol electro-oxidation. To increase the activities of the Pt/C catalyst, carbon supports with high electric conductivity such as mesoporous carbon, carbon nanofiber, and carbon nanotube were employed. The Pt/e-CNF (etched carbon nanofiber) catalyst showed higher maximum current density of $70 mA cm^{-2}$ and lower on-set voltage of 0.54 V vs. NHE than the Pt/Vulcan XC-72 in methanol oxidation. Although the carbon named by CNT (carbon nanotube) series turned out to have larger BET surface area than the carbon named by CNF (carbon nanofiber) series, the Pt catalysts supported on the CNT series were less active than those on the CNF series due to their lower electric conductivity and lower availability of pores for Pt loading. Considering that the BET surface area and electric conductivity of the e-CNF were similar to those of the Vulcan XC-72, smaller Pt particle size of the Pt/e-CNF catalyst and stronger metal-support interaction were believed to be the main reason for its higher catalytic activity.

Development of Methane Decomposition Reactor for Hydrogen Production Using Solar Thermal Energy (수소생산을 위한 태양열 이용 메탄 분해 반응기 개발)

  • Kim, Haneol;Kim, Jongkyu
    • New & Renewable Energy
    • /
    • v.17 no.2
    • /
    • pp.40-49
    • /
    • 2021
  • This paper explains the development process of methane decomposition to hydrogen and carbon black using solar thermal energy. It also demonstrates the advantages and disadvantages of five different reactors for each development stage, including the reactor's experimental results. Starting with the initial direct heating type reactor, the indirect heating type reactor was developed through five modifications. The 40-kWth solar furnace installed at the Korea Institute of Energy Research was used for the experiment. In the experiment using the developed indirect heating reactor, an 89.0% methane to hydrogen conversion rate was achieved at a methane flow rate of 40 L/min, obtained at about twice the flow rate compared to previous advanced studies.

Comparison of Performance of Brushless DC Drives under Direct Torque Control and PWM Current Control

  • Zhu Z. Q.;Liu Yong;Howe David
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.337-342
    • /
    • 2005
  • Direct torque control (DTC) was originally developed for induction machine drives, and, more recently has been applied to permanent magnet brushless AC (BLAC) drives. In this paper, the performance of DTC controlled brushless DC (BLDC) drives is compared with that of PWM current controlled BLDC drives, both with and without current shaping. Both simulation and experimental results are presented, as well as the analysis of the resulting torque waveforms. It is shown that, in addition to exhibiting a fast torque response, a DTC controlled BLDC drive has a significantly lower low-frequency torque ripple than the PWM current controlled BLDC drive without current shaping, and that it is easier to implement than PWM current control with current shaping.

A Hybrid DTC-DSC Drive for High Performance Induction Motor Control

  • Jidin, Auzani;Idris, Nik Rumzi Nik;Yatim, Abdul Halim Mohamed;Sutikno, Tole;Elbuluk, Malik E.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.704-712
    • /
    • 2011
  • This paper describes a hybrid induction motor drive system incorporating DTC-hysteresis and Direct Self Control (DSC) schemes to achieve excellent dynamic performance. The control scheme is switched from a circular to a hexagonal flux locus whenever a dynamic condition is encountered. On the other hand, when the motor operates under steady state conditions, a circular flux locus is used. Without major modifications to the simple structure of a basic DTC, hexagonal flux locus operation is established by modifying the flux error status, before it is fed to the look-up table. The feasibility of the proposed hybrid scheme to achieve excellent control performance is verified by experimental results.

Design and Preparation of High-Performance Bulk Thermoelectric Materials with Defect Structures

  • Lee, Kyu Hyoung;Kim, Sung Wng
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.75-85
    • /
    • 2017
  • Thermoelectric is a key technology for energy harvesting and solid-state cooling by direct thermal-to-electric energy conversion (or vice versa); however, the relatively low efficiency has limited thermoelectric systems to niche applications such as space power generation and small-scale or high-density cooling. To expand into larger scale power generation and cooling applications such as ATEG (automotive thermoelectric generators) and HVAC (heating, ventilation, and air conditioning), high-performance bulk thermoelectric materials and their low-cost processing are essential prerequisites. Recently, the performance of commercial thermoelectric materials including $Bi_2Te_3$-, PbTe-, skutterudite-, and half-Heusler-based compounds has been significantly improved through non-equilibrium processing technologies for defect engineering. This review summarizes material design approaches for the formation of multi-dimensional and multi-scale defect structures that can be used to manipulate both the electronic and thermal transport properties, and our recent progress in the synthesis of conventional thermoelectric materials with defect structures is described.

Development of 100W thermoelectric power generation module (100W급 열전발전 모듈 기술 개발)

  • Moon, Jihong;Hwang, Jungho;Lee, Uendo
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.321-322
    • /
    • 2015
  • Thermoelectric power generation has emerged as a promising alternative technology because it offers a potential application in the direct conversion of waste heat into electric energy. The performance of thermoelectric power generator depends on thermoelectric materials and thermoelectric power module designs. The main objective of this study is to design a 100W thermoelectric generation (TEG) module and to get optimal operating conditions of the module. The design and performance of the TEG module will be presented.

  • PDF