• Title/Summary/Keyword: Direct Casting

Search Result 122, Processing Time 0.027 seconds

Effect of Casting Processes on the Microstructures and Mechanical Properties of B390 Aluminium Alloy (주조용 B390 알루미늄합금의 조직과 기계적 성질에 대한 각종 주조법의 영향)

  • Han, Yo-Sub;Lee, Ho-In;Kim, Sung-Su;Kim, Jung-Sik
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.259-267
    • /
    • 1993
  • The effects of casting processes-direct and indirect squeeze casting, permanent mold casting and die casting on the microstructure and mechanical properties were studied for the hypereutectic B390 aluminium alloy. The effects of T5 and T6 heat treatment were also examined. The direct and indirect squeeze casting showed no casting defects such as porosity and shrinkage were observed in permanent mold castings and die castings. The primary silicon phase was refined and homogeneously distributed in the order of indirect squeeze casting, diecasting, direct squeeze casting and permanent mold casting. Depletion of primary silicon phase in die casting surface was disappeared in indirect squeeze casting. Tensile strength of cast and heat treated specimens were increased in the order of direct squeeze casting, permanent mold casting, indirect squeeze casting and die casting. Hardness of indirect squeeze castings was larger than that of other castings. As indirect squeeze casting of B390 aluminium alloy, the time of T6 heat treatment to achieve high strength can be reduced.

  • PDF

A Study on the Direct Casting from SLA RP Patterns (SLA 쾌속조형 패턴에 의한 직접 주조에 관한 연구)

  • 이승채;김우순;김동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.406-410
    • /
    • 2004
  • Rapid prototyping technologies have been widely used to reduce the development cost of new products. Manufacturing industries are nowadays characterized by the flexibility and complexity of products. This to due to the rapid development of manufacturing technology and diverse needs of customers. In this paper, the burning condition for getting casting product of resin pattern have been examined experimentally. In generally, the burning conditions have effect on the casting products. Using the direct casting. we directly producted the jewelry.

  • PDF

A Study on the Direct Casting of Photo-polymer (포토 폴리머의 직접 주조에 관한 연구)

  • Kim, Woo-Soon;Kim, Dong-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.127-133
    • /
    • 2006
  • Rapid prototyping technologies have been widely used to reduce the development cost of new products. Manufacturing industries are nowadays characterized by the flexibility and complexity of products. This to due to the rapid development of manufacturing technology and diverse needs of customers. In this paper, the best homing out and casting condition for getting casting product of resin pattern(photopolymer) have been examined experimentally. In generally, the burning out and casting conditions have effect on the casting products. Using the direct casting. we directly Producted the Jewelry. And in this paper, we used only gypsum. Many study of casting for resin have been used to dental investment. A dental investment is good for resin casting. but dental investment is too hard and not useful on the jewelry casting. Therefore we need to find the way of resin casting by gypsum.

Development of High Quality Die Casting Technology with Function to Purify Molten Metal (용탕청정기능을 부여한 고품질 다이캐스팅 기술의 개발)

  • Hatano, Tomoyuki;Takagi, Hiromi;Inagaki, Mitsugi
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.3-9
    • /
    • 2004
  • Die casting is "a process in which molten metal is injected at high velocity and pressure into a mold(die) cavity". Casting with smooth surfaces, high dimensional precision, complicated shapes, and reduced weight can be obtained using this process. But this process is susceptible to casting defects such as porosities, scattered chilled layers, hard spots, etc. For preventing casting defects, we developed "low-velocity high pressure die casting technology", "squeeze die casting technology", "heat insulating sleeve lubricant technology", and "direct pouring technology". The "direct pouring technology" is useful for producing molten metal without oxide contamination. It consists of a pumping system which supplies pure molten metal to the die casting machine. By using this technology, we have successfully reduced oxide contamination in castings to 1/20 of that of our previous castings.

Determination of the process variables for quality monitoring in direct rolling processes (직접압연 공정에서 품질계측을 위한 공정변수의 선정)

  • 배세철;박영준;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1364-1367
    • /
    • 1996
  • Recently, direct rolling process, called as strip casting process, has been interested in to save production cost by reducing forming processes. In direct rolling process, since a steel strip of thickness 1-5(mm) can be produced directly from molten metal, it can eliminate secondary hot rolling process. On the other hand, since many process variables are existed in this process and relation of these variables is very complex, it is difficult to realize the process design and the quality control. In this paper, as first step to overcome above difficulties, the quantitative relationship of the process variables affected to quality of the strip has been carried out through the numerical analysis. Also, we determined the process variable to monitor the quality in the direct rolling process. As a result, we show that the solidification final point, called as Nip point, was related directly to quality of the strip.

  • PDF

The Application of Computer Simulation, Industrial CT and DLS RP for the rapid development of casting pilot models (신속한 주물 시제품 개발을 위한 전산모사 기술과 산업용 단층촬영기 및 쾌속표형기의 적용)

  • Yoo S.M.;Lim C.H.;Cho I.S.;Choi J.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.195-196
    • /
    • 2006
  • Direct laser sintering (DLS) technology for the resign coated sand is one of attractive technologies to produce molds and cores for the foundry industry rapidly and cost effectively. The objective of this case study is to develop casting pilot models using computer simulation technology, DLS RP machine and industrial computed tomography. The proposed casting design was verified by the Z-Cast software in the fields of fluid flow and solidification during the casting process. Casting parts with aluminum alloy using the post-curing treated sand moulds and cores are accurate to dimension and defect free.

  • PDF

Casting of Ductile Cast Iron using Metal Mold and Improvement of Impact Toughness by Direct Tempering (금형주조법에 의한 구상흑연주철의 제조 및 직접 템퍼링에 의한 충격인성 향상)

  • Choi, Sung Bae;Lee, Won Sik;Hong, Young Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.3
    • /
    • pp.159-164
    • /
    • 1997
  • Non-alloyed and 1.0%Ni alloyed ductile cast iron were cast into the sand mold and metal mold, and finer graphite size was obtained in case of metal mold casting. Direct tempering after casting showed the slight increase of absorbed energy, which is largely due to the relieving of residual stress that is developed during casting. After austempering heat treatment, higher impact energy was obtained in case of metal mold casting than sand mold casting, which is due to the finer graphite size.

  • PDF

Effect of Casting Temperature and Speed on Formation of Surface Defect in Al-8Zn-2Mg-2Cu Billets Fabricated by Direct-Chill Casting Process (수직 연속주조 공정으로 제조된 Al-8Zn-2Mg-2Cu 빌렛의 표면 결함 형성에 미치는 주조 온도와 주조 속도의 영향)

  • Lee, Yoon-Ho;Kim, Yong-You;Lee, Sang-Hwa;Kim, Min-Seok;Euh, Kwangjun;Lee, Dong-Geun
    • Journal of Korea Foundry Society
    • /
    • v.41 no.3
    • /
    • pp.241-251
    • /
    • 2021
  • 7000-series aluminum alloys are noted for their superior strength compared with other Al alloys, and their billets are generally fabricated by direct-chill (DC) casting. Surface defects in a DC-cast aluminum billet are mainly related to exudation and the meniscus freezing phenomenon, which are influenced by alloy compositions, casting speed, and casting temperature. 7000-series aluminum alloys have a wide freezing range during solidification, which makes it easy for casting defects to occur. In this study, we investigated surface defect evolution in casting billets of Al-8Zn-2Mg-2Cu alloy fabricated by a DC casting process. The billets showed "wavy" or "dotted" surfaces. The wavy surface was formed by meniscus freezing at a lower casting speed (200 mm/min) and temperature (655 ℃). In the wavy surface, refined dendritic cells were observed in a concave region due to the constitutional supercooling caused by meniscus freezing. Meanwhile, at a higher casting temperature (675 ℃), the dotted surface was formed by pore formation. In the dotted surfaces in the billet formed at a high casting speed (230 mm/min), an exudation layer was formed by the high metallostatic head pressure. The dotted region and the smooth region had a refined dendritic morphology and a columnar morphology at the exudation layer, respectively. This is attributed to the formation of gas pores in the dotted region.

Development of Rapid Tooling using Investment Casting & R/P Master Model (R/P 마스터 모델을 활용한 정밀주조 부품 및 쾌속금형 제작 공정기술의 개발)

  • Jeong, Hae-Do;Kim, Hwa-Young
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.330-335
    • /
    • 2000
  • Functional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported. But a system which can build directly 3D parts of high performance functional material as metal park would get long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we translated the wax patterns to numerous metal tool prototypes by new investment casting process combined conventional investment casting with rapid prototyping & rapid tooling process. With this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P pare to metal part.

  • PDF

Utilization of 3D CAD and 3D Printer and UV Curavle resin Casting Defect (3D CAD, 3D 프린터 활용과 광경화수지 주물 결함)

  • Ryu, Ki-Hyu;Seo, Jin-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.3
    • /
    • pp.169-176
    • /
    • 2017
  • Casting process includes wax pattern, investment, dewaxing, curing, casting, etc., and each single process is important to achieve a good result. Since 2000, 3D printers have been developed and widely used; as more prefer UV Curavle resin method over wax method, resultant casting defects have become worse. To resolve such problem, preceding research revealed casting defects of existing wax method. In particular, defects of UV Curavle resin method showed difference in investment, dewaxing, deresinating and curing compared to the existing one. Accordingly, results were presented through casting tests; especially, a temperature rising curve only for UV Curavle resin was shown rather than one for the existing method. Lastly, this research classified those not available with direct casting and suggested mold manufacturing. This research is expected to be useful for 3D printer users or those who would conduct direct casting with UV Curavle resin.