• Title/Summary/Keyword: Dipstick

Search Result 36, Processing Time 0.03 seconds

Comparison of three types of analyzers for urine protein-to-creatinine ratios in dogs

  • Ji, Sumin;Yang, Yeseul;Jeong, Yeji;Hwang, Sung-Hyun;Kim, Myung-Chul;Kim, Yongbaek
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.14.1-14.11
    • /
    • 2021
  • Background: Quantitation of urine protein is important in dogs with chronic kidney disease. Various analyzers are used to measure urine protein-to-creatinine ratios (UPCR). Objectives: This study aimed to compare the UPCR obtained by three types of analyzers (automated wet chemistry analyzer, in-house dry chemistry analyzer, and dipstick reading device) and investigate whether the differences could affect clinical decision process. Methods: Urine samples were collected from 115 dogs. UPCR values were obtained using three analyzers. Bland-Altman and Passing Bablok tests were used to analyze agreement between the UPCR values. Urine samples were classified as normal or proteinuria based on the UPCR values obtained by each analyzer and concordance in the classification evaluated with Cohen's kappa coefficient. Results: Passing and Bablok regression showed that there were proportional as well as constant difference between UPCR values obtained by a dipstick reading device and those obtained by the other analyzers. The concordance in the classification of proteinuria was very high (κ = 0.82) between the automated wet chemistry analyzer and in-house dry chemistry analyzer, while the dipstick reading device showed moderate concordance with the automated wet chemistry analyzer (κ = 0.52) and in-house dry chemistry analyzer (κ = 0.53). Conclusions: Although the urine dipstick test is simple and a widely used point-of-care test, our results indicate that UPCR values obtained by the dipstick test are not appropriate for clinical use. Inter-instrumental variability may affect clinical decision process based on UPCR values and should be emphasized in veterinary practice.

Urinalysis and Imaging Studies in Children with Urinary Tract Infection (소아 요로감염증으로 진단된 환아에서 요분석 검사와 신영상 검사)

  • Kim Il-Kyung;Seong Ho;Choi Chang-Hee;Kim Kyong-Il
    • Childhood Kidney Diseases
    • /
    • v.3 no.2
    • /
    • pp.117-122
    • /
    • 1999
  • Purpose : We studied the correlation between urinalysis and radiologic findings in infants and children with urinary tract infection. Method : Urine Dipstick test and unstained urine microscopic examination were carried out in 56 infants and children who were hospitallized with the diagnosis of urinary infection by pocitive urine culture at Seoul Adventist from September 1996 through August 1998. Urine was collected by midsream, catheter, urine bag after cleansing or bladder puncture. Renal sonography and $^{99m}Tc-DMSA$ renal scan or voiding cystoureterography were studied. Results : 1)In dipstick analysis, leukocyte esterase(LE) were positive in 30 cases of 56 patients(54%) and Nitrite were positive in 20 cases of 56 patients(36%) and LE or Nitrite were positive in 38 cases of 56 children with UTI(68%). 2)In microscopic analysis, WBC were positive in 38 cases of patients(68%) and bacteria were positive in 23 cases of 56 patients(41%) and WBC or bacteria were positive in 41 cases of 56 children with UTI(71%). 3)Ten cases of 56 UTI patients(18%) showed negative finding in Dipstick and microscopic analysis. 4)There was no significant difference in positive rate of dipstick(71% vs 66%) and microscopia analysis(83% vs 66%) between two group with or without renal scar on $^{99m}Tc-DMSA$ scan (P=0.117). 5)There was no significnt difference in positive rate of dipstick(100% vs 91%) and microscopic analysis(100% vs 100%) between two groups with or without vesicoureteral reflux on VCUG. Conclusion : There was no specific relationships between the abnormal urinalysis and the abnormal findings on $^{99m}Tc-DMSA$ scan or VCUG.

  • PDF

Use of Antibody Displayed Phage for the Detection of Dextran Using a Dipstick Assay and Transmission Electron Micrograph

  • Kim Du-Woon;Day Donal F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1316-1319
    • /
    • 2006
  • An antibody displayed phage collection (SBAE-2R), screened from a human synthetic phage antibody library (Fab 21ox), was used for the determination of dextran. The dextran-binding affinity was determined by serologically specific transmission electron microscopy (TEM) and a paper dipstick assay. The phage collection was distributed over the dextrancoated grids with 39$\pm$25 phages/$\mu$m$^2$ on the grids. Phages were not seen on dextran-coated grids exposed to the Fab 2lox phage library. The phage collection (SBAE-2R) produced 54$\pm$3 color normalized intensity (N.I.) from 125 ppm to 1,000 ppm of dextran and 5$\pm$1 (N.I.) for 63 ppm of dextran in a paper dipstick assay. This research extends the analytical options for dextran analysis by antibody displayed phage with a minimum of equipment usage.

A Dipstick-Type Electrochemical Immunosensor for The Detection of The Organophosphorus Insecticide Fenthion

  • Cho, Young-Ae;Cha, Geun-Sig;Lee, Yong-Tae;Lee, Hye-Sung
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.743-746
    • /
    • 2005
  • A dipstick-type immunochemical biosensor for the detection of the organophosphorus insecticide fenthion was developed using a screen-printed electrode system as an amperometric transducer with polyclonal antibodies against fenthion as a bioreceptor. The assay of the biosensor involved competition between the pesticide in the sample and pesticide-glucose oxidase conjugate for binding to the antibody immobilized on the membrane. This was followed by measurement of the activity of the bound enzyme by the supply of the enzyme substrate (glucose) and amperometric determination of the enzyme reaction product ($H_2O_2$). The activity of the bound enzyme was inversely proportional to the concentration of pesticide. The optimized sensor system showed a linear response against the logarithm of the pesticide concentration ranging from $10^{-2}$ to $10^3\;{\mu}g/L$.

The Clinical Use of Routine Urinalysis (기본 요분석검사의 임상적 이용)

  • Lee, Seung Joo
    • Childhood Kidney Diseases
    • /
    • v.17 no.2
    • /
    • pp.35-41
    • /
    • 2013
  • Routine urinalysis is a simple, economical, and useful test that facilitates the detection of urinary system diseases and monitoring of renal disease progression. It consists of 4 parts of specimen evaluation, gross examination, a dipstick urinalysis, and a sediment microscopic urinalysis. Urine specimens should first be evaluated in terms of acceptability, and thereafter, the gross appearance is examined for color, turbidity, and odor. In particular, a dipstick urinalysis is an easy and rapid test that provides information on the multiple physicochemical properties of the urine sample. Moreover, although a sediment microscopic urinalysis is time-consuming, it provides information on the cells, microorganisms, casts, and crystals. In the present report, the clinical significance of the routine urinalysis and the problems concerning interpretation are summarized.

Effect of Illuminance on Color-based Analysis of Diabetes-Related Urine Fusion Analytes on Dipstick Using a Smartphone Camera (스마트폰 카메라를 활용한 뇨시험지 당뇨병관련 융합 분석인자의 색기반 분석에 미치는 외부 조도 영향)

  • Kim, Na-Kyung;Cho, Young-Sik;Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.93-99
    • /
    • 2021
  • Recently, the miniaturization and digitalization for the inspection devices of point-of-care testing (POCT) are rapidly evolving. In the urine test, a lot of researches on index paper technology are being conducted because people can be self-diagnosed through visual color comparison using a urine test paper, Dipsick. The purpose of this study is to analyze the RGB values from the color changes on Dipstick Pad, which isused for urine test, using a smartphone camera. To this end, the primary, analytes in urine wasdiabetes-related parameters such as glucose, ketone body and pH, which is the most frequently tested elements, and we pursuited to quantify the changes in dipstick color caused from artificial urine containing different ranges of sugar, ketone body, and pH. In this experiment, changes in RGB values under bright and dark illuminances were compared, and changes in RGB value were monitored as a function of concentration of analytes under the ambient illumination of laboratory. As a result, color separation at the bright luminance region was good, but it did not appearat the low luminance region, and the changed profiles in RGB value under different illuminances was suggested to correct the problem of the color separation algorithm.

Development of Dipstick-Gage-Type Small Sensor Equipped with Individual Control Circuit for Detecting Engine Oil Deterioration (전용제어회로를 적용한 딥스틱게이지형 소형 엔진열화감지센서 개발)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.143-148
    • /
    • 2013
  • In this study, several sensor parts used to obtain better signal stability are designed, a separate control circuit for the sensor is developed, and the results obtained using this control circuit are analyzed. The capacitances of the whole sensor system are measured using the control circuit connected to an improved flexible printed circuit board and an asymmetric dual sensor coated with a ceramic material. To realize good discrimination for a small change in the measured capacitance as the engine oil deteriorates, a commercial application-specific integrated circuit is installed on the control circuit as a capacitance-to-digital converter. The absolute error of a measured signal is found to be approximately ${\pm}4fF$.

Measurement of urinary protein in children

  • Myung Hyun Cho
    • Childhood Kidney Diseases
    • /
    • v.26 no.2
    • /
    • pp.69-73
    • /
    • 2022
  • Proteinuria is an early hallmark of kidney disease and a major risk factor for systemic cardiovascular diseases. There are several methods to measure proteinuria, such as the urine dipstick test, 24-hour urinary protein excretion method, and spot urine for the protein-to-creatinine ratio. The urine dipstick test is simple but inaccurate. The 24-hour urinary protein excretion method is the gold standard; however, it is cumbersome, especially in children. Spot urine for the protein-to-creatinine ratio is simple and accurate, but has limitations. Specific urinary protein such as albumin can be measured instead of the total protein content. Tests should be avoided in situations that cause transient proteinuria or false-positive results. It should be performed correctly, and its limitations should be recognized and interpreted accurately.

Automation of urine dipstick test by simultaneous scanning : A pilot study (요 스트립검사 자동화를 위한 동시 비교 스캔 기법 예비 연구)

  • Lee, Sang-Bong;Choi, Seong-Su;Lee, In-Kwang;Han, Jeong-Su;Kim, Wan-Seok;Kim, Wun-Jae;Cha, Eun-Jong;Kim, Kyung-Ah
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.169-175
    • /
    • 2010
  • Urinalysis is an important clinical test to diagnose urinary diseases, and dipstick method with visual inspection is widely applied in practice. Automated optical devices recently developed have disadvantages of long measurement time, big size and heavy weight, accuracy degradation with time, etc. The present study proposed a new computer scanning technique, in which the test strip and the standard chart were simultaneously scanned to remove any environmental artifacts, followed by automated differentiation with the minimum distance algorithm, leading to significant enhancement of accuracy. Experiments demonstrated an accuracy of 100 % in that all test results were identical with the human visual inspection. The present technique only uses a personal computer with scanner and shortens the test time to a great degree. The results are also stored and accumulated for later use which can be transmitted to remote locations through a network, thus could be easily integrated to any ubiquitous health care systems.

Rapid and Sensitive Detection of Salmonella in Chickens Using Loop-Mediated Isothermal Amplification Combined with a Lateral Flow Dipstick

  • Liu, Zhi-Ke;Zhang, Qiu-Yu;Yang, Ning-Ning;Xu, Ming-Guo;Xu, Jin-Feng;Jing, Ming-Long;Wu, Wen-Xing;Lu, Ya-Dong;Shi, Feng;Chen, Chuang-Fu
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.454-464
    • /
    • 2019
  • Salmonellosis is a highly contagious bacterial disease that threatens both human and poultry health. Tests that can detect Salmonella in the field are urgently required to facilitate disease control and for epidemiological investigations. Here, we combined loop-mediated isothermal amplification (LAMP) with a chromatographic lateral flow dipstick (LFD) to rapidly and accurately detect Salmonella. LAMP primers were designed to target the Salmonella invA gene. LAMP conditions were optimized by adjusting the ratio of inner to outer primers, $MgSO_4$ concentration, dNTP mix concentration, amplification temperature, and amplification time. We evaluated the specificity of our novel LAMP-LFD method using six Salmonella species and six related non-Salmonella strains. All six of the Salmonella strains, but none of the non-Salmonella strains, were amplified. LAMP-LFD was sensitive enough to detect concentrations of Salmonella enterica subsp. enterica serovar Pullorum genomic DNA as low as $89fg/{\mu}l$, which is 1,000 times more sensitive than conventional PCR. When artificially contaminated feed samples were analyzed, LAMP-LFD was also more sensitive than PCR. Finally, LAMP-LFD gave no false positives across 350 chicken anal swabs. Therefore, our novel LAMP-LFD assay was highly sensitive, specific, convenient, and fast, making it a valuable tool for the early diagnosis and monitoring of Salmonella infection in chickens.