• Title/Summary/Keyword: Dipropargyl ether

Search Result 3, Processing Time 0.017 seconds

Preparation and Properties of Modified Silicon-containing Arylacetylene Resin with Bispropargyl Ether

  • Zhang, Jian;Huang, Jianxiang;Yu, Xiaojiao;Wang, Canfeng;Huang, Farong;Du, Lei
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3706-3710
    • /
    • 2012
  • A novel silicon-containing arylacetylene resin (MSAR) modified by dipropargyl ether of bisphenol A (DPBPA) and dipropargyl ether of perfluorobisphenol A (DPPFBPA) was prepared separately. The curing behaviors of modified resins, DPBPA/MSAR and DPPFBPA/MSAR, were characterized with differential scanning calorimeter (DSC). The kinetic parameters of modified resins were obtained by the Kissinger and Ozawa methods. The results of dynamic mechanical analysis (DMA) revealed that the glass transition temperature ($T_g$) of the cured DPBPA/MSAR reached $486^{\circ}C$. According to the thermogravimetric analysis (TGA), the decomposition temperature ($T_{d5}$) of the cured resins and char yield ($Y_c$, $800^{\circ}C$) decreased as the dipropargyl ether loadings increased, especially in air. With the same weight loading, thermal stability of DPBPA/MSAR was better than that of DPPFBPA/MSAR. The carbon fiber (T300) reinforced composites exhibited excellent flexural properties at room temperature with a high property retention at $300^{\circ}C$.

Polymerization of Bis(3-trimethylsilyl-2-propynyl)ether and Its Copolymerization with Diethyl Dipropargylmalonate

  • Gal, Yeong-Soon;Jin, Sung-Ho;Lee, Hyung-Jong;Kim, Sung-Hyun;Kim, Won-Chul;Park, Sam-Kwon
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.80-86
    • /
    • 2003
  • The polymerization of a cyclopolymerizable disubstituted dipropargyl ether, his(3-trimethylsilyl-2-propynyl)ether (BTPE), was attempted by various transition metal catalysts. The yield for the polymerization of BTPE was generally low, which is possibly due to the steric hindrance of bulky substituents. In general, the catalytic activities of Mo-based catalysts were found to be greater than those of W-based catalysts. The highest yield was obtained when the MoCl$_{5}$,-EtAlCl$_2$(1:2) catalyst system was used. The copolymerization of BTPE and diethyl dipropargylmalonate yielded a random copolymer with conjugated polymer backbone. However the polymers were partially desilylated, depending on the reaction conditions. The thermal and morphological properties of the resulting polymers were also discussed.d.