• Title/Summary/Keyword: Dipole source

Search Result 153, Processing Time 0.02 seconds

Development of EPICS-IOC Measuring Magnetic Field at A/Q separator for Separating Specific Ions (가속이온 분리를 위한 A/Q Separator에서 자장측정용 EPICS-IOC 개발)

  • Lee, Su-Yeong;Yim, Hee-Joong;Kim, Jae-Hong;Mun, Jun-Yeong;Park, Mi-Jeong;Lee, Sang-Il;Lee, Dong-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • The installation and performance test of the ISOL (Isotope Separation On Line) system for the generation and separation of Rare Isotopes (RI) beams is in progress at the Rare Isotope Science Project (RISP), Institute for Basic Science (IBS). The various RI beams generated by the ISOL target/ion source go through the beam lines and separators, and only the RI beam desired by the user is selected and transmitted to the superconducting linear accelerator at the downstream of the ISOL. In the ISOL system, two separators are installed to separate a specific RI beam, and control is performed by the Experimental Physics and Industrial Control System (EPICS). In this study, an EPICS IOC (Input-Output Control) was developed to measure the magnetic field of a dipole magnet for mass separation of a multivalent (n+) RI beam in the A/Q separator, which is one of the ISOL RI beam separators. The operational stability of the A/Q separator was tested through a magnetic field measurement using a Hall probe.

A marine deep-towed DC resistivity survey in a methane hydrate area, Japan Sea (동해의 메탄 하이드레이트 매장 지역에서의 해양 심부 견인 전기비저항 탐사)

  • Goto, Tada-Nori;Kasaya, Takafumi;Machiyama, Hideaki;Takagi, Ryo;Matsumoto, Ryo;Okuda, Yoshihisa;Satoh, Mikio;Watanabe, Toshiki;Seama, Nobukazu;Mikada, Hitoshi;Sanada, Yoshinori;Kinoshita, Masataka
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.52-59
    • /
    • 2008
  • We have developed a new deep-towed marine DC resistivity survey system. It was designed to detect the top boundary of the methane hydrate zone, which is not imaged well by seismic reflection surveys. Our system, with a transmitter and a 160-m-long tail with eight source electrodes and a receiver dipole, is towed from a research vessel near the seafloor. Numerical calculations show that our marine DC resistivity survey system can effectively image the top surface of the methane hydrate layer. A survey was carried out off Joetsu, in the Japan Sea, where outcrops of methane hydrate are observed. We successfully obtained DC resistivity data along a profile ${\sim}3.5\;km$ long, and detected relatively high apparent resistivity values. Particularly in areas with methane hydrate exposure, anomalously high apparent resistivity was observed, and we interpret these high apparent resistivities to be due to the methane hydrate zone below the seafloor. Marine DC resistivity surveys will be a new tool to image sub-seafloor structures within methane hydrate zones.

Three-Dimensional High-Frequency Electromagnetic Modeling Using Vector Finite Elements (벡터 유한 요소를 이용한 고주파 3차원 전자탐사 모델링)

  • Son Jeong-Sul;Song Yoonho;Chung Seung-Hwan;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.280-290
    • /
    • 2002
  • Three-dimensional (3-D) electromagnetic (EM) modeling algorithm has been developed using finite element method (FEM) to acquire more efficient interpretation techniques of EM data. When FEM based on nodal elements is applied to EM problem, spurious solutions, so called 'vector parasite', are occurred due to the discontinuity of normal electric fields and may lead the completely erroneous results. Among the methods curing the spurious problem, this study adopts vector element of which basis function has the amplitude and direction. To reduce computational cost and required core memory, complex bi-conjugate gradient (CBCG) method is applied to solving complex symmetric matrix of FEM and point Jacobi method is used to accelerate convergence rate. To verify the developed 3-D EM modeling algorithm, its electric and magnetic field for a layered-earth model are compared with those of layered-earth solution. As we expected, the vector based FEM developed in this study does not cause ny vector parasite problem, while conventional nodal based FEM causes lots of errors due to the discontinuity of field variables. For testing the applicability to high frequencies 100 MHz is used as an operating frequency for the layer structure. Modeled fields calculated from developed code are also well matched with the layered-earth ones for a model with dielectric anomaly as well as conductive anomaly. In a vertical electric dipole source case, however, the discontinuity of field variables causes the conventional nodal based FEM to include a lot of errors due to the vector parasite. Even for the case, the vector based FEM gave almost the same results as the layered-earth solution. The magnetic fields induced by a dielectric anomaly at high frequencies show unique behaviors different from those by a conductive anomaly. Since our 3-D EM modeling code can reflect the effect from a dielectric anomaly as well as a conductive anomaly, it may be a groundwork not only to apply high frequency EM method to the field survey but also to analyze the fold data obtained by high frequency EM method.