• Title/Summary/Keyword: Dipole particles

Search Result 32, Processing Time 0.019 seconds

Comparison of Scattered Light of ex vivo Mouse Neutrophils by Different Wavelength Laser Irradiation (2개의 레이저 파장에 따른 마우스 호중구의 산란광 비교 연구)

  • Park, Jae-Sung;Son, Min-Ji;Hwang, Chang-Soon;Lee, Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.365-378
    • /
    • 2022
  • Complete blood cell count(CBC) is a technique that counts leukocytes for each type of blood cell being analyzed. The principle is that laser is incident to ex vivo flowing leukocytes in a microcapillary tube and scattered light occurs by laser and leukocytes. By collecting the scattered light, we can count the types of cells because different cells generate different light-scattering patterns. However, the technique has an intrinsic limitation, scattering pattern is shown in a wide range region in the resulting, which makes it difficult to accurate analyze and use fluorescent dyes. To overcome this limitation, a new design of CBC with a dual laser, which irradiates with orthogonal angles for collecting quad-scattering information was proposed. Before development, the scattering difference depending on wavelength must be investigated to only catch up to the scattered signal by angles. Some studies, which focused on simple particles, have been conducted to theoretically and experimentally investigate different scatterings by wavelength. In this study, we propose an optical system for measuring scattered light and investigate a complex particle. As a result, the green laser made strong scattering signals in both the forward and side direction: 10% and 30%, respectively.

Monte Carlo Simulation of the Carbon Beam Nozzle for the Biomedical Research Facility in RAON (한국형 중이온 가속기 RAON의 의생물 연구시설 탄소 빔 노즐에 대한 Monte Carlo 시뮬레이션)

  • Bae, Jae-Beom;Cho, Byung-Cheol;Kwak, Jung-Won;Park, Woo-Yoon;Lim, Young-Kyung;Chung, Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • The purpose of the Monte Carlo simulation study was to provide the optimized nozzle design to satisfy the beam conditions for biomedical researches in the Korean heavy-ion accelerator, RAON. The nozzle design was required to produce $C^{12}$ beam satisfying the three conditions; the maximum field size, the dose uniformity and the beam contamination. We employed the GEANT4 toolkit in Monte Carlo simulation to optimize the nozzle design. The beams for biomedical researches were required that the maximum field size should be more than $15{\times}15cm^2$, the dose uniformity was to be less than 3% and the level of beam contamination due to the scattered radiation from collimation systems was less than 5% of total dose. For the field size, we optimized the tilting angle of the circularly rotating beam controlled by a pair of dipole magnets at the most upstream of the user beam line unit and the thickness of the scatter plate located downstream of the dipole magnets. The values of beam scanning angle and the thickness of the scatter plate could be successfully optimized to be $0.5^{\circ}$ and 0.05 cm via this Monte Carlo simulation analysis. For the dose uniformity and the beam contamination, we introduced the new beam configuration technique by the combination of scanning and static beams. With the combination of a central static beam and a circularly rotating beam with the tilting angle of $0.5^{\circ}$ to beam axis, the dose uniformity could be established to be 1.1% in $15{\times}15cm^2$ sized maximum field. For the beam contamination, it was determined by the ratio of the absorbed doses delivered by $C^{12}$ ion and other particles. The level of the beam contamination could be achieved to be less than 2.5% of total dose in the region from 5 cm to 17 cm water equivalent depth in the combined beam configuration. Based on the results, we could establish the optimized nozzle design satisfying the beam conditions which were required for biomedical researches.