• 제목/요약/키워드: Dipole alignment

검색결과 25건 처리시간 0.02초

Synthesis and Nonlinear Optical Properties of Novel Y-Type Polyesters with Enhanced Thermal Stability of Second Harmonic Generation

  • Kim, Jin-Hyang;Lee, Ju-Yeon;Won, Dong-Seon;Rhee, Bum-Ku
    • Macromolecular Research
    • /
    • 제15권6호
    • /
    • pp.506-512
    • /
    • 2007
  • 2,3-Di-(2'-hydroxyethoxy)-4'-nitrostilbene (3) was prepared and condensed with terephthaloyl chloride, adipoyl chloride, and sebacoyl chloride to yield novel Y-type polyesters (4-6) containing the NLO-chromophores 2,3-dioxynitrostilbenyl groups, which constituted parts of the polymer backbones. Polymers 4-6 were soluble in common organic solvents such as acetone and N,N-dimethylformamide. Polymers 4-5 showed thermal stability up to $300^{\circ}C$ in thermogravimetric analysis with glass transition temperatures $(T_g)$, obtained from differential scanning calorimetry, in the range $81-95^{\circ}C$. The second harmonic generation (SHG) coefficients $(d_{33})$ of the poled polymer films at the 1064 nm fundamental wavelength were around $3.68{\times}10^{-9}$ esu. The dipole alignment exhibited high thermal stability up to $T_g$, and there was no SHG decay below $T_g$ due to the partial main-chain character of the polymer structure.

Synthesis and Properties of Novel Y-type Nonlinear Optical Polyester Containing Dioxynitroazobenzene Group with Enhanced Thermal Stability of Dipole Alignment

  • Kim, Mi-Sung;Cho, You-Jin;Song, Mi-Young;Lee, Ju-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3361-3366
    • /
    • 2011
  • New Y-type polyester (3) containing nitrophenylazoresorcinoxy groups as NLO chromophores, which are components of the polymer backbone, was prepared and characterized. Polyester 3 is soluble in common organic solvents such as N,N-dimethylformamide and acetone. It shows a thermal stability up to $240^{\circ}C$ in thermogravimetric analysis with glass-transition temperature ($T_g$) obtained from differential scanning calorimetry near $116^{\circ}C$. The second harmonic generation (SHG) coefficient ($d_{33}$) of poled polymer film at the 1064 nm fundamental wavelength is around $4.63{\times}10^{-9}$ esu. The dipole alignment exhibits a thermal stability even at $4^{\circ}C$ higher than $T_g$, and there is no SHG decay below $120^{\circ}C$ due to the partial main-chain character of polymer structure, which is acceptable for NLO device applications.

Preparation of Novel T-type Polyurethanes with High Thermal Stability of Second Harmonic Generation and Their Nonlinear Optical Properties

  • Jang, Han-Na;Lee, Ga-Young;Lee, Ju-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권4호
    • /
    • pp.811-816
    • /
    • 2008
  • 2,5-Di-(2'-hydroxyethoxy)benzylidenemalononitrile (3) was prepared and polymerized with 2,4-toluenediisocyanate and 3,3'-dimethoxy-4,4'-biphenylenediisocyanate to yield novel T-type polyurethanes 4 and 5 containing 2,5-dioxybenzylidenemalononitrile, nonlinear optical (NLO)-chromophores as part of the polymer backbones. Polyurethanes 4 and 5 were soluble in common organic solvents such as acetone and N,Ndimethylformamide and showed a thermal stability up to $250{^{\circ}C}$ with glass-transition temperatures ($T_g$) in the range $119-146{^{\circ}C}$. The second harmonic generation (SHG) coefficients ($d_{33}$) of poled polymer films at 1064 nm fundamental wavelength were around $5.82{\times}10^{-9}$ esu. The dipole alignment exhibited high thermal stability up to $T_g$, and there was no SHG decay below $140{^{\circ}C}$ due to the partial main-chain character of the polymer structure, which was acceptable for nonlinear optical device applications.

Synthesis of Novel Y-type Nonlinear Optical Polyester with Enhanced Thermal Stability of Second Harmonic Generation for Electro-Optic Applications

  • Cho, You-Jin;Lee, Ju-Suk;Lee, Ju-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1509-1514
    • /
    • 2010
  • Methyl 3,4-di-(2'-hydroxyethoxy)benzylidenecyanoacetate (3) was prepared and condensed with terephthaloyl chloride to yield novel Y-type polyester (4) containing 3,4-dioxybenzylidenecyanoacetate groups as NLO-chromophores, which constituted parts of the polymer main chains. The resulting polymer 4 is soluble in common organic solvents such as acetone and N,N-dimethylformamide. Polymer 4 shows thermal stability up to $280^{\circ}C$ in thermogravimetric analysis with glass-transition temperature obtained from differential scanning calorimetry near $105^{\circ}C$. The second harmonic generation (SHG) coefficient ($d_{33}$) of poled polymer films at the 1064 nm fundamental wavelength is around 2.42 pm/V. The dipole alignment exhibits high thermal stability up to near $T_g$, and there is no SHG decay below $100^{\circ}C$ due to the partial main-chain character of polymer structure, which is acceptable for NLO device applications.

Preparation and Properties of A Novel Y-type Nonlinear Optical Polyester with Dioxybenzylidenecyanoacetate Groups

  • Lee, Ga-Young;Won, Dong-Seon;Jang, Han-Na;No, Hyo-Jin;Lee, Ju-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1080-1084
    • /
    • 2009
  • Methyl 2,4-di-(2'-hydroxyethoxy)benzylidenecyanoacetate (3) was prepared and polymerized with terephthaloyl chloride to yield a novel Y-type polyester 4 containing 2,4-dioxybenzylidenecyanoacetate groups as NLOchromophores, which constituted parts of the polymer backbone. The resulting polymer 4 is soluble in common organic solvents such as acetone and N,N-dimethylformamide. Polymer 4 showed thermal stability up to 280 ${^{\circ}C}$ in thermogravimetric analysis with glass-transition temperature obtained from differential scanning calorimetry near 108 ${^{\circ}C}$. The second harmonic generation (SHG) coefficient ($d_{33}$) of poled polymer films at the 1064 nm fundamental wavelength was around $3.54\;{\time}\;10^{-9}$ esu. The dipole alignment exhibited a thermal stability up to near $T_g$ and no significant SHG decay was observed below 100 ${^{\circ}C}$ due to the partial main-chain character of polymer structure, which is acceptable for NLO device applications.

Novel Y-Type Polyimide with Highly Enhanced Thermal Stability of Second Harmonic Generation

  • Lee, Ju-Yeon;Kim, Jin-Hyang;Rhee, Bum-Ku
    • Macromolecular Research
    • /
    • 제15권3호
    • /
    • pp.234-237
    • /
    • 2007
  • 3,4-Bis-(3,4-dicarboxyphenylcarboxyethoxy)-4'-nitrostilbene dianhydride was prepared and reacted with 4,4'-(hexafluoroisopropylidene)dianiline to yield a novel Y-type polyimide containing the 3,4-dioxynitrostilbenyl group as an NLO-chromophore, which constituted part of the polymer backbone. The resulting polyimide was soluble in polar solvents such as acetone and N,N-dimethylformamide. The polymer exhibited good thermal stability up to $370^{\circ}C$ in the thermogravimetric analysis. The glass-transition temperature ($T_g$) obtained from the differential scanning calorimetry thermogram was near to $153^{\circ}C$. The second harmonic generation (SHG) coefficient ($d_{33}$) of the poled polymer film at the fundamental wavelength of $1064\;cm^{-1}$ was around $2.15\;{\times}\;10^{-8}\;esu$ (9.01 pm/V). The dipole alignment exhibited exceptionally high thermal stability even at a temperature $30^{\circ}C$ above the $T_g$, and there was no SHG decay below $180^{\circ}C$ because of the partial main chain character of the polymer structure.

소형 안테나의 성능 향상을 위한 직교 배치에 관한 연구 (A Study of Cross Alignment for Increasing the Performance of Small Antenna)

  • 김종성;최경;김재흥
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.155-161
    • /
    • 2002
  • As the wireless communications are gradually developed, the higher frequency is demanded and the smaller the size of antenna shall be reduced by the wavelength of the operating frequency. However, the smaller the size of antenna becomes, the less the gain is obtained according to the frequency, so that a new attempt such as an array antenna has been examined to improve the characteristics. Also, for the convenience of communication, the omni-directional property is required. In this paper, two antennas system which is aligned in cross direction in tested and analyzed. The main scope is focused to get an appropriated distance between the two small antennas to get better properties. There are various ways of array arrangement, but in this study, it should be placed on the same PCB for easy implementation and the direction of each antenna are aligned to be a cross($90^{\circ}$) position. The study is carried out by comparing the radiation patterns mainly, and the theoretical expectation and the computer simulation are also executed. The final model is the folded IF-antennas system printed on PCB and the ideal dipole-antenna arrangement in also test to verify the possibility of our implementation. And it is finally proved by measuring experiments.

  • PDF

Preparation and Nonlinear Optical Properties of Novel Polyesters with Enhanced Thermal Stability of Second Harmonic Generation

  • Kim, Jin-Hyang;Won, Dong-Seon;Lee, Ju-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권1호
    • /
    • pp.181-186
    • /
    • 2008
  • 2,5-Di-(2'-hydroxyethoxy)-4'-nitrostilbene (3) was prepared and polycondensed with terephthaloyl chloride, adipoyl chloride, and sebacoyl chloride to yield novel T-type polyesters (4-6) containing the NLO-chromophores dioxynitrostilbenyl groups, which constituted parts of the polymer backbones. Polymers 4-6 are soluble in common organic solvents such as acetone and N,N-dimethylformamide. They showed thermal stability up to 260 oC in thermogravimetric analysis with glass-transition temperatures obtained from differential scanning calorimetry in the range 90-95 oC. The second harmonic generation (SHG) coefficients (d33) of poled polymer films at the 1064 nm fundamental wavelength were around 1.42 ´ 10-9 esu. The dipole alignment exhibited high thermal stability up to 5 oC higher than glass-transition temperature (Tg), and there was no SHG decay below 100 oC due to the partial main-chain character of polymer structure, which is acceptable for NLO device applications.