• Title/Summary/Keyword: Diphenylurea

Search Result 3, Processing Time 0.018 seconds

Transition Metal Catalyzed Carbonylation of Nitrobenzene for the Synthesis of N,N'-diphenylurea (균일계 전이금속 촉매를 이용한 니트로벤젠의 카르보닐화 반응 연구: N,N'-디페닐우레아 합성)

  • Lee, Chul Woo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1079-1085
    • /
    • 1999
  • An investigation was made of the effect of various transition metal catalysts, ligands, and a promoter on the synthesis of N,N'-diphenylurea(DPU) from nitrobenzene, aniline, and carbon monoxide. Homogeneous Pd and Ni catalysts were found to be highly efficient, giving almost quantitative isolated DPU yields at 100% nitrobenzene conversion. Bidentate ligand, 1,3-bis(diphenylphosphino)proane(dppp) showed much improved activity and significantly different reactivity relative to the usual monodentate $PPh_3$ ligand in the presence of Ni and Pd catalysts. These results were inferred to the effect of the cis coordination of bidentate dppp ligand on the metal. The use of a promoter $Et_4NCl$ was indispensable in the case of $PPh_3$, yet inhibited the reaction if used with dppp. It was possible to reuse the Pd-dppp catalyst system, although the catalytic activity was reduced slowly.

  • PDF

Effects of Foliar-Sprayed Benzyladenine and Diphenylurea on Leaf Senescence, Grain Yield and Some Characters Related to Grain Quality of Rice (벼에서 Benzyladenine과 Diphenylurea의 엽면살포가 잎의 노화, 수량 및 미질관련형질에 미치는 영향)

  • 이변우;명을재;남택수;이정양
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.4
    • /
    • pp.323-330
    • /
    • 1994
  • Benzyladenine(BA) and Diphenylurea(DPU) at 10ppm level were foliar-applied one to three times at an interval of 10 days from heading stage of rice variety, Dongjinbyeo. One time treatment of both cytokinins did not delayed leaf senescence substantially, but consecutive treatments of two to three times markedly retarded leaf senescence. Leaf senescence retarding effects were greater in BA than DPU. Ripened grain ratio, grain weight and grain yield were not improved by the treatments. BA treatments increased the percentage of green and white belly kernels with no effects on opaque and white core kernels. BA and DPU treatments did not altered amylose content, but BA treatments significantly decreased protein content of polished rice. Consecutive treatments of BA and DPU twice or three times at an interval of 10 days from heading increased oil content by 30 to 78% as compared to non-treated control, but one time treatment at any stage did not enhance it of polished rice. Fatty acid composition was slightly altered in favor of unsaturated fatty acid by BA and DPU treatments.

  • PDF

Conservation of Thymus pallidus Cosson ex Batt. by shoot tip and axillary bud in vitro culture

  • Ansari, Zineb Nejjar El;Boussaoudi, Ibtissam;Benkaddour, Rajae;Hamdoun, Ouafaa;Lemrini, Mounya;Martin, Patrick;Badoc, Alain;Lamarti, Ahmed
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.53-65
    • /
    • 2020
  • Here, we describe an efficient and rapid protocol for the micropropagation of Thymus pallidus Cosson ex Batt., a very rare medicinal and aromatic plant in Morocco. After seed germination, we tested the effect of different macronutrients, cytokinins alone or in combination with gibberellic acid (GA3) or auxins, on T. pallidus plantlet growth. We found that Margara macronutrients (N30K) had the best effect on the in vitro development of the plantlets. The addition of 0.93 μM/L 1,3-diphenylurea (DPU), 0.46 μM/L adenine (Ad), and 0.46 and 0.93 μM/L kinetin (Kin) resulted in the best shoot multiplication and elongation. In addition, the combination of 0.46 μM/L Kin, DPU, or Ad with gibberellic acid, in particular, 0.46 μM/L Ad + 0.58 μM/L GA3 and 0.46 μM/L Kin + 1.15 μM/L GA3, led to better bud and shoot multiplication. Moreover, the integration of the combinations of 0.46 μM/L Kin and auxins, namely 0.46 μM/L Kin + 2.85 μM/L indole-3-acetic acid (IAA), 0.46 μM/L Kin + 2.85 or 5.71 μM/L indole-3-butyric acid (IBA), and 0.46 μM/L Kin + 0.3 or 0.57 μM/L 1-naphthaleneacetic acid (NAA), in the culture medium led to better root development and optimized aerial growth. Finally, the in vitro plants from the medium containing N30K + 0.46 μM/L Kin + 2.85 μM/L IAA were successfully acclimatized; these plants served as a source for repeating in vitro culture.