• 제목/요약/키워드: Diphenylamine

검색결과 32건 처리시간 0.017초

2-Methyl-4-methoxydiphenylamine 합성을 위한 촉매반응의 최적화 (Optimization of Catalytic Reaction for Synthesis of 2-Methyl-4-methoxydiphenylamine)

  • 조정우;김은석;김기석;김성훈
    • 공업화학
    • /
    • 제10권2호
    • /
    • pp.293-298
    • /
    • 1999
  • Fluoran계 감열색소의 중간체인 2-Methyl-4-methoxydiphenylamine(MMDPA)을 합성하는 촉매반응의 반응기구를 규명하고 반응조건을 최적화하였다. 반응물질로서는 2-methyl-4-methoxyaniline(MMA), 3-methyl-4-nitroanisole(MNA), 그리고 cyclohexanone의 혼합물을 사용하였으며, 5 wt % Pd/C를 촉매로 사용하였다. 반응실험은 reflux condenser가 부착된 개방형 slurry reactor에서 진행시켰으며, 생성물은 GC/MS와 NMR에 의해서 분석하였다. 반응조건을 최적화 시킨 결과 xylene용매 속에서 0.01 gmoles MMA 투입기준으로 MMA : MNA : cyclohexanone = 1 : 2 : 150의 반응물조성, $160^{\circ}C$의 반응온도, 0.5 g 촉매량 조건에서 8~10시간 경과 후 90 mole %의 MMDPA수율을 얻을 수 있었다. MMA와 cyclohexanone간의 축합반응에 의해 생성된 중간생성물의 탈수소화 반응단계가 총괄반응을 율속함을 알 수 있었다. MNA를 MMA와 함께 반응물에 투입함으로써 hydrogen transfer반응에 의하여 총괄반응속도와 MMDPA수율이 증대되었다. 반응물에 과량으로 투입된 cyclohexanone은 MMA와의 축합반응을 촉진시키는 역할을 하였다.

  • PDF

급성(急性) 기아(饑餓)마우스의 간단백질(肝蛋白質), 핵산(核酸) 및 Guanine Deaminase 활성(活性)에 관(關)한 연구(硏究) (A Study on The Content of Liver Protein, Nucleic Acids, and Guanine Deaminase Activity of Mouse During Acute Starvation)

  • 박승희;김승원
    • Journal of Nutrition and Health
    • /
    • 제1권2호
    • /
    • pp.107-115
    • /
    • 1968
  • Number of aspects, not only nutritional but social as well as political involved in human starvation pose nowadays global problems. In order to help establish the minimum nutritional requirements in the daily life of a man and to free people as well from either undernourishment, malnutrition or even starvation many workers have devoted themselves so far on the research programs to know what and how number of metabolic events take place in animals in vivo. It is the purpose of the present paper to examine in effect to what extent both of the protein and nucleic acids (DNA & RNA) together with an enzyme, guanine deaminase, which converts guanine into xanthine and in turn ends up to uric acid as an end product, undergo changes, quantitatively during acute starvation, using the mouse as an experimental animal. The mouse was strictly inhibited from taking foods except drinking water ad libitum and was sacriflced 24, 48, and 72 hours following starvation thus acutely induced. The animals consisted of two experimental groups, one control and another starvation groups, each being consisted of 6-24 mice of whose body weights ranged in the vicinity of 10 g. The animals were sacriflced by a blow on the head, followed by immediate excision of their livers into ice-cold distilled water, washing adherent blood and other contaminant tissues. The liver was minced foramin, by an all-glass homogenizer immersing it in an ice-bath, followed by subsequent fractionatin of the homogenate (10% W/V in 0.25M sucrose solution made up with 0.05M phosphate buffer of pH 7.4). For the liver protein and guanine deaminase assay, the 10% homogenate was centrifuged at 600 x g for 10 minutes to eliminate the nuclear fraction; and for the estimation of DNA and RNA, the homogenate was prepared by the addition of 10% trichloroacetic acid in order to free the homogenate from the acid-soluble fraction, the remaining residue being delipidate by the addition of alcohol and dried in vacuo for later KOH (IN) hydrolysis. The changes in body and liver wegihts during acute starvation were checked gravimetrically. Protein contents in the liver were monitored by the method of Lowry et al; and guanine deaminase activities were followed by the assay of liberated ammonia from the substrate utilizing the Caraway's colorimetry. The extraction of both DNA and RNA was performed by the Schmidt-Thannhauser's method, which was followed by Marmur's method of purification for DNA and by Chargaff's method of purification for RNA. The determinations of both DNA and RNA were carried out by the diphenylamine reaction for the former and by the orcinol reaction for the latter. The following resume was the results of the present work. 1. It was observed that the body as well as liver weights fall abruptly during starvation, and that the loss of body weight showed no statistical correlation with the decreases in the content of liver protein. 2. The content of liver protein and activity of liver guanine deaminase activity as well decline dramatically, and the specific activities of the enzyme (activity/protein), however, decreased gradually as starvation proceeded. 3. Both of the nucleic acids, DNA and RNA, showed decrements in the liver of mouse during acute starvation; the latter, however, being more striking in the decline as compared to the former. 4. The decreases in the liver protein content as resulted from the acute starvation had no statistically significant correlation with the decrements of DNA in the same tissue, but had regressed with a significant statistical correlation with the fall of RNA in the tissue. 5. The decrease in the activity of guanine deaminase in the liver of mouse during acute starvation was functionally more proportional to the decrease in RNA than DNA, and moreover correlated with the changes in the content of the liver protein. 6. The possible mechanisms involved during in this acute starvation as bring the decreases in the contents of DNA, protein, and guanine deaminase were discussed briefly.

  • PDF