• Title/Summary/Keyword: Dip-coating method

Search Result 204, Processing Time 0.024 seconds

Electrochemical behavior of Calcium Titanate Coated Ti-6Al-4V Substrate in Artificial Saliva

  • Lee, Byoung-Cheon;Balakrishnan, A.;Ko, Myung-Won;Choi, Je-Woo;Park, Joong-Keun;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.22-25
    • /
    • 2008
  • In this study, calcium titanate $(CaTiO_3)$ gel was prepared by mixing calcium nitrate and titanium isopropoxide in 2-methoxy-ethanol. $CaTiO_3$ gel was single-layer coated on Ti-6Al-4V using a sol-gel dip-coating technique. The coating was calcined at $750^{\circ}C$ in air by utilizing a very slow heating rate of $2^{\circ}C/min$. The crystalline phases of the coating were characterized by x-ray diffraction using a slow scan rate of $1^{\circ}/min$. The morphology of the coating was analyzed by scanning electron microscopy. The corrosion behavior of Ti-6Al-4V samples coated with $CaTiO_3$ films were tested in an artificial saliva solution by potentiodynamic polarization and were quantified by the Tafel extrapolation method. The electrochemical parameters showed a considerable increase in the corrosion resistance for the $CaTiO_3$-coated Ti-6Al-4V samples compared to bare substrates.

A Downwardly Deflected Symmetric Jet to prevent Edge Overcoating in Continuous Hot-Dip Galvanizing (연속식 용융아연도금 공정에서 단부 과도금 현상을 방지하기 위한 하향 대칭 분류유동 연구)

  • Ahn, Gi-Jang;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1156-1162
    • /
    • 2005
  • In this study, a noble method is proposed to prevent the edge overcoating (EOC) that may develop near the edge of the steel strip in the gas wiping process of continuous hot-dip galvanizing. In our past study (Trans. of the KSME (B), Vol. 27, No. 8, pp. $1105\~1113$), it was found that EOC is caused by the alternating vortices which are generated by the collision of two opposed jets in the region outside the steel strip. When the two opposed jets collide at an angle much less than $180^{o}$, non-alternating stable vortices are established symmetrically outside the steel strip, which lead to nearly uniform pressure on the strip surface. In order to deflect both jets downward by a certain angle, a cylinder with small diameter is installed tangentially to the exit of the lower lip of the two-dimensional jet. In order to find an optimum cylinder diameter, the three dimensional flow field is analysed numerically by using the commercial code, STAR-CD. And the coating thickness is calculated by using an integral analysis method to solve the boundary layer momentum equation. In order to compare the present noble method with the conventional baffle plate method to prevent the EOC, the flow field with a baffle plate is also calculated. The calculation results show that the tangentially installed cylinder at the bottom lip of the jet exit is more effective than the baffle plate to prevent EOC.

Electrochemical Properties of NiO-YSZ Thin Films on 316 Stainless Steel Bipolar Plates Under a Simulated PEMFC Environment

  • Lee, W.G.;Jang, H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1177-1182
    • /
    • 2012
  • The corrosion resistance of 316L stainless steel coated with NiO-YSZ (Ni added yttria stabilized zirconia) was examined in a proton exchange membrane fuel cell (PEMFC) environment. The NiO-YSZ coating was carried out using a sol-gel dip coating method, and the corrosion resistance and interfacial contact resistance (ICR) were determined by the composition and morphology of the NiO-YSZ film. The corrosion resistance increased with increasing Ni content in the NiO-YSZ film, but rapid corrosion was observed when the YSZ film contained more than 15 wt % Ni due to surface cracks. The polarization resistance was improved by several orders of magnitude when 316L stainless steel was coated with a 15 wt % NiO-YSZ film compared to bare 316L. The ICR of the NiO-YSZ film was decreased to that of bare 316L when the YSZ film contained 25 wt % NiO, suggesting the possible application of NiO-YSZ coated stainless steel for a bipolar plate.

Solidification of Hot-Dip Galvanized Layer by Electrostatically Charged Aerosol Particles (정전 대전된 액적에 의한 용융 아연 도금층의 응고 방법)

  • 김상헌;김형민;정원철;정원섭
    • Journal of Surface Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.233-240
    • /
    • 2000
  • A novel electrostatic spraying method to solidify molten zinc coating layer was studied by SEM and measurement of sample's temperature. The sprayed droplets also served as nucleation sites in the solidification reaction of molten zinc but might leave the pitting mark by impinging on its surface especially at high spray pressure. Our experimental results showed that electric field could change the sprayed particle trajectories and assist the fine droplets to attach on the surface. Thus, by reducing the spray pressure and by applying the electric voltage higher than -20 KV to charge the droplets electrostatically, we could produce the spangle free galvanized coating layer without pitting.

  • PDF

[ $H_2$ ] production by photoelectrochemical reaction of $TiO_2$ thin film ($TiO_2$ 박막의 광전기 화학반응에 의한 $H_2$의 제조)

  • Jung, Hyun-Chai;Kim, Ki-Sun;Nam, Sung-Young;Sun, Kyung-Ho;Yoon, Dai-Hyun
    • Solar Energy
    • /
    • v.10 no.2
    • /
    • pp.69-76
    • /
    • 1990
  • Photoelectrochemical decomposition of water by the irradiation of light to the $TiO_2$ thin film soaked in water was observed. The $TiO_2$ thin film was coated on top of $SnO_2$ nesa glass by use of spray method and of dip-coating method. The spray technique of $SnO_2$ nesa film production and dip-coating technique of $TiO_2$ thin film preparation on top of the $SnO_2$ nesa film were discribed briefly. $TiO_2$ film appearance was observed by SEM and I-V characteristic curve were measured for the various thickness of $TiO_2$ film. The film Thickness $1.8{\mu}m$ showed the maximum photoelectric current. Xe-lamp was used as light source for the photoelectrochemical reaction of thin film $TiO_2$ in acidic water(pH=1)

  • PDF

Temperature-dependent Photoluminescence Study on Aluminum-doped Nanocrystalline ZnO Thin Films by Sol-gel Dip-coating Method

  • Nam, Giwoong;Lee, Sang-Heon;So, Wonshoup;Yoon, Hyunsik;Park, Hyunggil;Kim, Young Gue;Kim, Soaram;Kim, Min Su;Jung, Jae Hak;Lee, Jewon;Kim, Yangsoo;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.95-98
    • /
    • 2013
  • The photoluminescence (PT) properties of Al-doped ZnO thin films grown by the sol-gel dip-coating method have been investigated. At 12 K, nine distinct PL peaks were observed at 2.037, 2.592, 2.832, 3.027, 3.177, 3.216, 3.260, 3.303, and 3.354 eV. The deep-level emissions (2.037, 2.592, 2.832, and 3.027 eV) were attributed to native defects. The near-band-edge (NBE) emission peaks at 3.354, 3.303, 3.260, 3.216, and 3.177 eV were attributed to the emission of the neutral-donor-bound excitons ($D^0X$), two-electron satellite (TES), free-to-neutral-acceptors (e,$A^0$), donor-acceptor pairs (DAP), and second-order longitudinal optical (2LO) phonon replicas of the TES (TES-2LO), respectively. According to Haynes' empirical rule, we calculated the energy of a free exciton (FX) to be 3.374 eV. The thermal activation energy for $D^0X$ in the nanocrystalline ZnO thin film was found to be ~25 meV, corresponding to the thermal dissociation energy required for $D^0X$ transitions.

Manufacturing and Characterization of Organic-Inorganic Hybrid Coating Film Using Sol-Gel Method (Sol-Gel법을 이용한 유무기 하이브리드 코팅막 제조 및 특성평가)

  • Seungwon Cho;Dabin Kim;Ji-Sun Lee;Dongwook Shin;Jinho Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.9
    • /
    • pp.439-447
    • /
    • 2024
  • Organic-inorganic hybrid coating films have been used to increase the transmittance and enhance the physical properties of plastic substrates. Sol-gel organic-inorganic thin films were fabricated on polymethylmethacrylate (PMMA) substrates using a dip coater. Metal alkoxide precursor tetraethylsilicate (TEOS) and alkoxy silanes including decyltrimethoxysilane (DTMS), 3-glycidoxypropyltrimethoxysilane (GPTMS), phenyltrimethoxysilane (PTMS), 3-(trimethoxysilyl)propyl methacrylate (TMSPM) and vinyltrimethoxysilane (VTMS) were used to synthesize sol-gel hybrid coating solutions. Sol-gel synthesis was confirmed by the results of FT-IR. Cross-linking of the Si-O-Si network during synthesis of the sol-gel reaction was confirmed. The effects of each alkoxy silane on the coating film properties were investigated. All of the organic-inorganic hybrid coatings showed improved transmittance of over 90 %. The surface hardness of all coating films on the PMMA substrate was measured to be 4H or higher and the average thickness of the coating films was measured to be about 500 nm. Notably, the TEOS/DTMS coating film showed excellent hydrophobic properties, of about 97°.

A Study of Conductive Materials and Performance Comparison According to the Manufacturing Process for Induction Heating Ceramics Container (내열 세라믹 용기의 인덕션 가열을 위한 전자기 유도용 도전 소재의 제조 공정에 따른 특성 평가)

  • Jun-Woo Lee;Ji-Hui Oh;Yong-Nam Kim;Sang-Mo Koo;Dong-Won Lee;Jong-Min Oh
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.6
    • /
    • pp.668-674
    • /
    • 2024
  • Recently, as environmental issues caused by gas stoves have led to the widespread adoption of induction appliances, specialized cookware for induction is essential. However, due to the inability of ceramic containers to be directly used on induction cooktops, a conductive coating is required on the bottom of the cookware, presenting limitations such as complex deposition processes and extended coating times in existing methods including thermal spraying, dip coating, and transcription method. We confirmed the potential of heat-resistant cookware for induction use by coating the bottom of the ceramic container with Ag through a simple manufacturing process of screen-printing and measuring its thermal conductivity and reliability. The Ag-coated ceramic cookware produced by screen-printing demonstrated similar thermal conductivity and reliability to those made using the traditional method of transfer printing. In addition, the adhesive strength before and after thermal shock testing was even superior in the screen-printing method, which suggests a higher expected lifespan. As a result, it is expected that induction-compatible heat-resistant ceramic containers with excellent performance and lifespan will be manufactured through the screen-printing process, which is more cost-effective and efficient compared to other methods.

Development of Graphene Nanocomposite Membrane Using Layer-by-layer Technique for Desalination (다층박막적층법을 이용한 담수화용 그래핀 나노복합체 분리막 개발)

  • Yu, Hye-Weon;Song, Jun-Ho;Kim, Chang-Min;Yang, Euntae;Kim, In S.
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.75-82
    • /
    • 2018
  • Forward osmosis (FO) desalination system has been highlighted to improve the energy efficiency and drive down the carbon footprint of current reverse osmosis (RO) desalination technology. To improve the trade-off between water flux and salt rejection of thin film composite (TFC) desalination membrane, thin film nanocomposite membranes (TFN), in which nanomaterials as a filler are embeded within a polymeric matrix, are being explored to tailor the separation performance and add new functionality to membranes for water purification applications. The objective of this article is to develop a graphene nanocomposite membrane with high performance of water selective permeability (high water flux, high salt rejection, and low reverse solute diffusion) as a next-generation FO desalination membrane. For advances in fabrication of graphene oxide (GO) membranes, layer-by-layer (LBL) technique was used to control the desirable structure, alignment, and chemical functionality that can lead to ultrahigh-permeability membranes due to highly selective transport of water molecules. In this study, the GO nanocomposite membrane fabricated by LBL dip coating method showed high water flux ($J_w/{\Delta}{\pi}=2.51LMH/bar$), water selectivity ($J_w/J_s=8.3L/g$), and salt rejection (99.5%) as well as high stability in aqueous solution and under FO operation condition.

PVDF-TiO2 coated microfiltration membranes: preparation and characterization

  • Shon, H.K.;Puntsho, S.;Vigneswaran, S.;Kandasamy, J.;Kim, J.B.;Park, H.J.;Kim, I.S.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.193-206
    • /
    • 2010
  • Organic fouling and biofouling pose a significant challenge to the membrane filtration process. Photocatalysis-membrane hybrid system is a novel idea for reducing these membranes fouling however, when $TiO_2 photocatalyst nanoparticles are used in suspension, catalyst recovery is not only imposes an extra step on the process but also significantly contributes to increased membrane resistance and reduced permeate flux. In this study, $TiO_2$ photocatalyst has been immobilized by coating on the microfiltration (MF) membrane surface to minimize organic and microbial fouling. Nano-sized $TiO_2$ was first synthesized by a sol-gel method. The synthesized $TiO_2$ was coated on a Poly Vinyl Difluoride (PVDF) membrane (MF) surface using spray coating and dip coating techniques to obtain hybrid functional composite membrane. The characteristics of the synthesized photocatalyst and a functional composite membrane were studied using numerous instruments in terms of physical, chemical and electrical properties. In comparison to the clean PVDF membrane, the $TiO_2$ coated MF membrane was found more effective in removing methylene blue (20%) and E-coli (99%).