• Title/Summary/Keyword: Dioxygenase

Search Result 198, Processing Time 0.025 seconds

Characterization of the Quinoline-Degrading Bacterium Pseudomonas sp. NFQ-1 Isolated from Dead Coal Pit Areas (폐광지역에서 분리한 quinoline 분해 세균인 Pseudomonas sp. NFQ-1의 특성연구)

  • 윤경하;황선영;권오성;오계헌
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.174-179
    • /
    • 2003
  • The bacterium NFQ-1 capable of utilizing quinoline (2,3-benzopyridine) as the sole source of carbon, nitrogen and energy was enriched and isolated from soil samples of dead coal pit areas. Strain NFQ-1 was identified as Pseudomonas nitroreducens NFQ-1 by BIOLOG system, and assigned to Pseudomonas sp. NFO-1. Pseudomonas sp. NFQ-1 was used with the concentration range of 1 to 10 mM quinoline. Strain NFQ-1 could degrade 2.5 mM quinoline within 9 hours of incubation. Initial pH 8.0 in the culture was reduced to 6.8, and eventually 7.0 as the incubation was proceeding. 2-Hydroxyquinoline, the first intermediate of the degradative pathway, accumulated transiently in the growth medium. The highest concentration of quinoline (15 mM) in this work inhibited cell growth and quinoline degradation. Pseudomonas sp. NFQ-1 was able to utilize various quinoline derivatives and aromatic compounds including 2-hydroxyquinoline, p-comaric acid, benzoic acid, p-cresol, p-hydroxybenzoate, protocatechuic acid, and catechol. The specific activity of catechol oxygenases was determined to approximately 184.7 unit/㎎ for catechol 1.2-dioxygenase and 33.19 unit/㎎ for catechol 2,3-dioxygenase, respectively. As the result, it showed that strain NFQ-1 degraded quinoline via mainly orthp-cleavage pathway, and in partial meta-cleavage pathway.

Degradation of Anthracene by a Pseudomonas strain, NGK1

  • Shinde Manohar;Kim, Chi-Kyung;Tim
    • Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.73-79
    • /
    • 1999
  • Pseudomonas sp. NGK1, isolated by naphthalene enrichment culture technique, is capable of degrading anthracene as a sole source of carbon and energy. The organism degraded anthracene through the intermediate formation of 1,2-dihydroxyanthracene, 2-hydroxy-3-naphthoic acid, salicylate, and catechol. The intermediates were isolated and characterized by TLC, spectrophotometry, and HPLC analysis. The cell free extract of anthracene-grown cells showed activities of anthracene dioxygenase, 2-hydroxy-3-naphthylaldehyde dehydrogenae, 2-hydroxy-3-naphthoate hydroxylase, salicylate hydroxylase and catechol 2,3-dioxygenase. The formed catechol as a metabolite is degraded through meta-cleavage with the formation of ${\alpha}$-hydroxymuconic semi-aldehyde.

  • PDF

S. setonii 유래 고온성 catechol-1,2-dioxgenase 특성연구

  • Park, Hyeon-Ju;Lee, Bok-Nam;An, Hye-Ryeon;Kim, Eung-Su
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.434-437
    • /
    • 2000
  • Streptomyces setonii(ATCC 39116) is a thermophilic gram-positive soil bacteria which undergoes an ortho-cleavage pathway in the presence of phenol or benzoate as a sole carbon and energy source. The specific activities of catechol-1,2-dioxygenase in S. setonii, a key enzyme in ortho-cleavage pathway, were induced by various aromatic compounds such as benzoate, phenol, m-hy-benzoate, p-hy-benzoate, catechol, o-cresol, m-cresol, p-cresol, benzene, toluene, ethyl-benzene, 2-chloro-phenol, and 4-chloro-phenol, among which the phenol showed the highest inducibility in the presence of 0.01% glucose. More than 0.1% glucose dramatically reduced the specific activities of catechol-1,2-dioxygenase induced by most of the single aromatic compounds tested.

  • PDF

Three Separate Pathways for the Initial Oxidation of Limonene, Biphenyl, and Phenol by Rhodococcus sp. Strain T104

  • Kim, Dockyu;Park, Min-Jung;Koh, Sung-Cheol;So, Jae-Seong;Kim, Eungbin
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.86-89
    • /
    • 2002
  • Rhodococcus sp. strain T104, which is able to grow on either biphenyl or limonene, was found to utilize phenol as sole carbon and energy sources. Furthermore, T104 was positively identified to possess three separate pathways for the degradation of limonene, phenol, and biphenyl. The fact that biphenyl and limonene induced almost the same amount of catechol 1,2-dioxygenase activity indicates that limonene can induce both upper and lower pathways for biphenyl degradation by T104.

Pseudomonas sp. Strain DJ77에서 Rieske-Type의 Ferredoxin을 암호화하는 phnR 유전자의 구조

  • Kim, Sungje;Park, Yong-Chjun;Kim, Chi-Kyung;Lim, Jai-Yun;Lee, Ki-Sung;Min, Kyung-Hee;Kim, Young-Chang
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.367-373
    • /
    • 1997
  • One of the three components of the phenanthrene dioxygenase which is required for conversion of phenanthrene to cis-phenanthrene dihydrodiol, Rieske-type ferredoxin encoded by phnR has been cloned and sequenced from Pseudomonas sp. strain DJ77. The gene phnR is positioned at the downstream of phnQ encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase. The PhnR ferredoxin contains 108 amino acids with a Mr of 11,355. The deduced amino acid sequence of the PhnR ferredoxin is 35-79% identical to those of homologous ferredoxins encoded by various genes.

  • PDF

Cloning and Sequenece Analysis of the hpa D Gene Responsible for Homoprotocatechuate 2, 3-Dioxgenae from Pseudomonas sp. DJ-12

  • Lee, Sang-Maha;Chae, Jong-Chan;Kim, Young-Soo;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.334-337
    • /
    • 2001
  • The degradative pathway of homoprotocatechuate (HPC) is the bacterial routhe wherby 3,4-dihydrox-yphenylactic acid is catabolized to pyruvate and succinate by a series of sequential reactions . The HPC is catalzed by homoprotocatechuate 2, 3-dioxygenase(HPC-2,3O) to from 5-carboxymethy1-2-hydroxy-muco semialdehyde. In this study, the hha D gene encoding. HPC, 2, 3O was Cloned from the chromo-somal DNA of Pseudomonas sp. DJ-12 and its nucleotide sequence was analyzed. The open reding frame of hpaD gene was found to be composed of 864 nucleotide pairs and to encode a poypetide with 287 amino acide residues. The deduced amino acid sequence of the HPC-2,3O from Pseudomonas. sp. DJ-12 exhibited 60~64% homology with those of the corresponding enzymes from E. coli. Salmonella enterica, and Klebsiella pneumoniae.

  • PDF

Identification of HGD mutations in an alkaptonuria patient: using the Internet to seek rare diseases

  • Cho, Sang-Yeun;Kim, Ja Hye
    • Journal of Genetic Medicine
    • /
    • v.15 no.1
    • /
    • pp.17-19
    • /
    • 2018
  • Alkaptonuria (AKU, OMIM: 203500) is a rare autosomal recessive disorder of tyrosine metabolism due to a defect of enzyme activity, homogentisate 1,2-dioxygenase (HGD). The patients with AKU initially presented with dark urine discoloration, and ochronosis and arthritis develop after third decades of life. With advances of Internet resources, web-based health seekers for rare disease are increasing. Here, we report the case of an 18-year-old boy with AKU who visited our center due to dark black urine based on self-diagnosis via web searching of this rare condition. Compound heterozygous mutations in HGD gene, IVS5+3A>C and IVS12+6T>C were identified and both of mutations were detected in his parents. Our case illustrates the utility of publicly available Internet resources for diagnosis of rare disease.