• Title/Summary/Keyword: Diospyros malabarica

Search Result 3, Processing Time 0.015 seconds

Antidiabetic activity of Diospyros malabarica Kostel bark: a preliminary investigation for possible mode of action

  • Mondal, Susanta Kumar;Chakraborty, Goutam;Bhaumik, Uttam Kumar;Gupta, Malaya;Mazumder, Upal Kanti
    • Advances in Traditional Medicine
    • /
    • v.8 no.3
    • /
    • pp.236-242
    • /
    • 2008
  • The defatted methanol extract of bark of Diospyros malabarica (DM) at doses of 200 and 400 mg/kg, p.o. showed significant hypoglycemic activity on normal rats. The extract also exerted significant antihyperglycemic effect in alloxan-induced hyperglycemia and resulted in increase in plasma protein content and decrease in alkaline phosphatase, cholesterol and triglyceride levels when compared with those in the diabetic control group. However there were no significant changes in body and kidney weights of the DM extract-treated animals, compared to those of the untreated diabetic rats as a control. However, the DM extract showed a potential antioxidant activity by increasing catalase activity and reducing lipid peroxidation in liver. The results demonstrate antidiabetic activity of the defatted methanol extract of DM bark.

Effects of Methanol Extracts from Diospyros malabarica Stems on Growth and Biofilm Formation of Oral Bacteria (인도감나무 줄기 추출물이 구강미생물의 생육과 바이오필름 생성에 미치는 영향)

  • Kim, Hye Soo;Kwon, Hyun Sook;Kim, Chul Hwan;Lee, Sang Woo;Sydara, Kongmany;Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.110-115
    • /
    • 2018
  • This study was conducted to investigate the potential of medicinal plants as oral health materials derived from natural products. Among the extracts from 200 medicinal plants grown in Nepal, Laos, Mongolia, Bangladesh, Vietnam, and China, stem extracts from Diospyros malabarica (1 mg/disc) showed the highest antibacterial activity against Porphyromonas gingivalis ATCC33277 and Streptococcus mutans ATCC25175. The D. malabarica stem extracts showed antibacterial activity similar to chlorhexidine, sodium lauryl sulfate, and triclosan, which were used as a positive control, as well as higher antibacterial activity against S. mutans ATCC25175 than P. gingivalis ATCC33277. The D. malabarica stem extracts showed bactericidal action (MBC, 0.4 mg/ml) against P. gingivalis ATCC33277 and bacteriostatic action against S. mutans ATCC25175. The biofilm production rate of S. mutans ATCC25175 and the expression of the comX gene associated to biofilm formation in the cultures treated with 0.2-1.0 mg/ml of D. malabarica stem extracts were suppressed in a concentration-dependent manner. Based on the above results, it can be concluded that D. malabarica stem extracts can be used as oral health material derived from natural materials, as demonstrated by the bacteriostatic action and inhibition of biofilm formation against S. mutans ATCC25175.

Antibacterial and Antibiofilm Activities of Diospyros malabarica Stem Extract against Streptococcus mutans (Streptococcus mutans에 대한 인도감나무 줄기 추출물의 항균활성 및 생물막 형성 억제 효과)

  • Kim, Hye Soo;Lee, Sang Woo;Sydara, Kongmany;Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.90-96
    • /
    • 2019
  • The objective of this study was to evaluate the potential of Diospyros malabarica stem extract, a natural materials, in oral health material. With this aim in mind, thin layer chromatography (TLC), TLC-bioautography, high-performance liquid chromatography (HPLC), electrospray ionization-mass spectrometry (ESI-MS), scanning electron microscopy (SEM), and real-time qPCR were performed. The antibacterial activity of D. malabarica stem extract against Streptococcus mutans KCTC3065 was confirmed in an n-hexane fraction with low polarity. The molecular weight of the antibacterial compound was estimated to be 188 by ESI-MS analysis. The inhibitory effects of the extract on biofilm formation and gene expression related to biofilm formation of S. mutans were determined by SEM and real-time PCR analysis. The extract inhibited the formation of S. mutans biofilms at D. malabarica stem extract concentrations of 1 mg/ml, as shown by SEM. The real-time PCR analysis showed that the expression of the gtfC gene, which is associated with biofilm formation, was significantly decreased in a dose-dependent manner. Based on the above results, it can be concluded that D. malabarica stem extracts, a natural materials, can be used in oral health products to suppress the formation of biofilms by inhibiting tooth adhesion of S. mutans, a causative agent of dental caries.