• Title/Summary/Keyword: Diospyros

Search Result 272, Processing Time 0.023 seconds

Differences in Tree Growth and Nutrient Absorption of Persimmon (Diospyros kaki) and Date Plum (D. lotus) Seedlings

  • Choi, Seong-Tae;Park, Doo-Sang;Kim, Sung-Chul;Kang, Seong-Mo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.276-280
    • /
    • 2013
  • D. kaki and D. lotus are used as rootstocks for astringent persimmons in Korea but characteristics of their seedlings have not been determined. In this experiment, their seeds were sown in 3-L pots on April 18 and the seedlings were grown until October 24. Growth and nutrient absorption were compared at the end of the season after destructively harvesting the seedlings. Seedling growth of D. lotus was much faster than that of D. kaki in terms of total stem length, stem diameter, and number of leaves. However, chlorophyll value and specific leaf weight were higher in D. kaki than in D. lotus. Dry weight of D. lotus was 3.6- and 3.7-fold higher than that of D. kaki in above-ground parts and the root, respectively. D. kaki seedlings were characterized by higher concentrations of N, P, K, Ca, and Mg in the leaves, stem, or the root. However, total contents of the elements were 1.8- to 3.7-fold higher in a D. lotus seedling due to its greater dry weight. Since D. lotus seedlings absorbed more inorganic elements on a tree basis and grew more vigorously than D. kaki seedlings, the level of fertilization for astringent persimmons should be adjusted depending on rootstocks to maintain the trees at the optimum vigor.

Comparison of Radical Scavenging and Immunomodulatory Activities Exhibited by an Aqueous Extract of Diospyros kaki Thunb. Fruit (Persimmon) (청도반시 추출물에 의한 라디칼소거 활성과 면역조절 활성의 상호 비교)

  • Heo, Jin-Chul;Chae, Jang-Heui;Lee, Sook-Hee;Lee, Yun-Rae;Moon, Kwang-Deog;Chung, Shin-Kyo;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.15 no.5
    • /
    • pp.749-753
    • /
    • 2008
  • To assess the relationship between anti-oxidant and immunomodulatory activities of Diospyros kaki Thunb. fruit, we harvested persimmons on the first Friday of every month from July to October, and conducted a DPPH assay, a T-bet promoter assay, and an ELISA for IL-4 determination. Anti-oxidant activity increased as fruit weight rose. When the fruit was extracted with five different solvents, and the extracts examined for radical scavenging activity, such activity exhibited a pattern similar to that seen when anti-oxidant activity was assessed. T-bet promoter activity decreased on ripening, whereas IL-4 expression increased, as tested in a DNFB-induced animal model. Collectively, the results suggest that inflammation-inhibitory activity, valuable in treatment of some immune diseases, rises as persimmons ripen.

Brown Felt on Persimmon (Diospyros kaki) Caused by Septobasidium sp. in Korea (Septobasidium sp.에 의한 감 갈색고약병 발생)

  • Ha, Jeong-Seok;Song, In-Kyu;Kim, Seung-Han;Kim, Ji-Won
    • Research in Plant Disease
    • /
    • v.27 no.2
    • /
    • pp.66-69
    • /
    • 2021
  • In 2020, a brown felt was observed on persimmon (Diospyros kaki) in persimmon orchards, Sangju, Korea. The symptom on persimmon was white to grey mycelial mats on some areas of the branches. Each mat progressively expanded until the mats coalesced to occupy larger areas and finally girdled the branches. The disease branches were covered with brown-colored mold, consisting of hyphal mats of the pathogen. Optimum temperature for mycelial growth was 30℃. On the basis of mycological characteristics, pathogenicity test, and molecular analysis with complete internal transcribed spacer rDNA region, the causal fungus was identified as Septobasidium sp. This is the first report of brown felt caused by Septobasidium sp. on persimmon in Korea.

Nutrients and antioxidant activity of Diospyros lotus L. (고욤나무 열매의 영양성분 및 항산화 활성)

  • Shin, Kyung-Ok;Yang, Ming;Ahn, Soo Rin
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.251-256
    • /
    • 2022
  • This study was conducted to determine whether Diospyros lotus L. fruit could be used as a natural functional food ingredient and whether its use should be increased. D. lotus fruit powder was found to have high acidity in the immature IDL stage and significantly higher sugar content in the mature MDL stage. The levels of crude fat, selenium, and tannins decreased significantly from the IDL stage to the MDL stage in D. lotus fruit powder. However, the levels of magnesium and calcium were significantly greater in the MDL stage than in the IDL stage (p<0.05). The total phenol content was significantly higher in the IDL stage, but the DPPH radical scavenging activity significantly increased in the MDL stage (p<0.05). In conclusion, the fruits of D. lotus. have high nutritional quality in both the immature and mature growth stages. Thus, it is a good candidate for use as a functional food, and its use should be increased because of its high nutritional qualities.

Study on the Anti-allergic Effect using Immature Persimmon (Diospyros kaki Thunb. Sangju-Dungsi) Ethanol Extract (미성숙 감(Diospyros kaki Thunb. Sangju-Dungsi) 에탄올 추출물의 항알레르기 생리활성 연구)

  • Lee, Myoung-Jin;Kim, Bae-Hwan
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.1
    • /
    • pp.29-41
    • /
    • 2022
  • This study was conducted to verify the availability of immature persimmon ethanol extract (IPEE) as a natural and functional ingredient in protecting inflammation and allergy of skin based on the mechanism. The major content analysis, antioxidant activities, anti-allergic activity, anti-inflammatory effect, and safety related to irritation of IPEE were evaluated. The gallic acid content per 10 mg/mL of IPEE was 0.522% (5.22 mg/g). The total polyphenol and flavonoid contents were 428.3 mg/g and 31.1 mg/g, respectively. In ABTS+ activity, DPPH ability and SOD-like activity, it showed a concentration-dependent increase, which indicated IPEE has excellent antioxidant activities. As for the anti-allergy test in RBL-2H3 cells, the IPEE showed a decrease in β-hexosaminidase secretion as the concentration increases, and IPEE tended to decrease IL-4 secretion in all RBL-2H3 cells compared to the IgE + HSA group. IPEE showed good anti-inflammatory effect in RAW 264.7 cells by decrease of NO production and inflammation cytokines (TNF-α and IL-6). Also IPEE showed non-irritant in BCOP assay. By the results of this study, the IPEE containing high tannins, had good antioxidant, anti-allergic, and anti-inflammatory effects, which indicated that the immature persimmon is considered to be a useful for the development of related functional ingredients.

Evaluation of Genetic Diversity among Persimmon Cultivars (Diospyros kaki Thunb.) Using Microsatellite Markers (초위성 마커를 이용한 감(Diospyros kaki Thunb.)의 유연관계 분석)

  • Hwang, Ji-Hyeon;Park, Yu-Ok;Kim, Sung-Churl;Lee, Yong-Jae;Kang, Jum-Soon;Choi, Young-Whan;Son, Beung-Gu;Park, Young-Hoon
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.632-638
    • /
    • 2010
  • The genetic diversity among 48 persimmon (Diospyros kaki Thunb.) accessions, indigenous in Korea and introduced from Japan and China, was evaluated by using simple sequence repeat (SSR) markers. From 20 SSR primer sets, a total of 114 polymorphic markers were detected among 12 pollination-constant non-astringent (PCNA), 13 pollination-variant non-astringent (PVNA), 15 pollination-variant astringent (PVA), and 8 pollination-constant astringent (PCA) cultivars. Analysis of pair-wise genetic similarity coefficient (Nei-Li) and unweighted pair-group method with arithmetic averaging (UPGMA) clustering revealed two main clusters and four subclusters for cluster I. The subclustering pattern was in accordance with the classification of persimmon cultivars based on the nature of astringency loss. Phenetic relationships among the subclusters showed a closer relatedness of the PCNA group with the PVNA group, and the PVA with the PCA group. Genetic similarity co-efficiency was 0.499 on average and the highest (0.954) similarity was observed between 'Cheongdo-Bansi' and 'Haman-Bansi'. The similarity was lowest (0.192) between 'Damopan'and 'Atago'. Identification of each cultivar with the execption of 'Cheongdo-Bansi' and 'Gyeongsan-Bansi' was possible based on the SSR fingerprints, suggesting that these SSR markers are a useful tool for protecting intellectual property on newly developed cultivars.

Antioxidant and Antipruritic Activities of Ethyl Acetate Fraction from Diospyros lotus Leaves (고욤(Diospyros lotus)잎 유래 Ethyl Acetate 분획물의 항산화 및 항가려움 활성)

  • Jeon, In Hwa;Kang, Hyun Ju;Kim, Sang Jun;Jeong, Seung Il;Lee, Hyun-Seo;Jang, Seon Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1635-1641
    • /
    • 2014
  • Diospyros lotus has been cultivated for its edible fruits, which are considered to have medicinal importance. The aim of this study was to evaluate the antioxidant and antipruritic activities of water-soluble, methanol extract, and ethyl acetate (EA) fractions from D. lotus leaves. The EA fraction showed the lowest $IC_{50}$ vale (DPPH: $5.3{\mu}g/mL$, ABTS: $53.8{\mu}g/mL$). Therefore, we further investigated anti-inflammatory and antipruritic effects of the EA fraction. TNF-${\alpha}$ production increased by PMA plus A23187 treatment was significantly inhibited by the EA fraction in a dose-dependent manner. The EA fraction also inhibited histamine release from rat peritoneal mast cells stimulated by compound 48/80, which promotes histamine release. Furthermore, EA fraction had inhibitory effects on scratching behavior induced by compound 48/80 in Balb/c mice. These results suggest that the EA fraction from D. lotus leaves has potential as ameliorative agent against oxidative stress and pruritus-related disease.

Blue Mold of Persimmon (Diospyros kaki) Caused by Penicillium crustosum (Penicillium crustosum에 의한 감 푸른곰팡이병 발생)

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.9 no.4
    • /
    • pp.217-220
    • /
    • 2003
  • A severe fruit rot of Persimmon (Diospyros kaki cv: Fuyu) was occurred during the storage and transport that infected with blue mold in Sweet Persimmon Experiment Station, Gyeongsangnam-do Agricultural Research and Extension Services, Korea. Fruit surfaces were infected with the fungus first and the colonized fungus formed mycelial mats. From the point of infection, fruits become collapsed and mostly ruptured. The pathogenic fungus from infected fruits was isolated and cultured on PDA. Colony color of the fungus was white at frist than became green on Malt Extract Agar and Czapek Yeast Extract Agar. Conidia were ellipsoid subglobose and 2.6${\sim}$3.8 ${\times}$ 2.4${\sim}$3.8 ${\mu}m$ in size. Stipes were 86${\sim}$320 ${\times}$ 2.8${\sim}$4.3 ${\mu}m$ in size. Rami were 7.5${\sim}$32.6 ${\times}$ 2.6${\sim}$4.2 ${\mu}m$ in size, Ramuli were 12.4${\sim}$14.8 ${\times}$ 3.2${\sim}$3.8 ${\mu}m$ in size, Metulae were 8.9${\sim}$13.6 ${\times}$ 2.8${\sim}$4.6 ${\mu}m$ in size. Phialides were ampulliform, 8.2${\sim}$12.4 ${\times}$ 2.3${\sim}$3.6 ${\mu}m$ in size. Based on the cultural and mycological characteristics and pathogenecity test on host plants, the fungus was identified as s, This is the first report on the blue mold of Persimmon (Diospyros kaki) caused by P. crustosum in Korea.

Occurrence of Blue Mold on Sweet Persimmon(Diospyros kaki) Caused by Penicillium expansum (Penicillium expansum에 의한 감 푸른곰팡이병 발생)

  • Kwon, Jin-Hyeuk;Jeong, Seon-Gi;Hong, Seung-Beom;Chae, Yun-Seok;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.290-293
    • /
    • 2006
  • A fruit rot of sweet persimmon(Diospyros kaki cv. 'Fuyu') that infected with blue mold was found during the storage and transport in Jinju Gyeongnam Province, Korea. Fruit surfaces that infected with the fungus were formed water soaked lesion at first then gradually colonized with the fungus and formed mycelial mats. From the point of infection, fruits become sunken and mostly ruptured. The pathogenic fungus was isolated from infected fruits and cultured on potato dextrose agar. The colonies of the pathogenic fungi were white at frist then became greyish green on malt extract agar. Conidia were ellipsoidal and $2.6{\sim}3.8{\times}2.4{\sim}3.8{\mu}m$ in size. Phialides were ampulliform, verticilate of 3-7, $8.0{\sim}9.2{\times}2.0{\sim}3.0{\mu}m$ in size. Metulae were verticils of 2-4, smooth, $9.0{\sim}12.6{\times}3.0{\sim}4.6{\mu}m$ in size. Ramuli were groups 1-3, smooth, $11.0{\sim}17.6{\times}2.3{\sim}3.0{\mu}m$ in size. Rami were groups 1-2, $7.5{\sim}32.6{\times}2.6{\sim}4.2{\mu}m$ in size. Stipes were septate, smooth, thin walled, $56{\sim}302{\times}2.8{\sim}4.0{\mu}m$ in size. Penicilli were mostly quaterverticillate. Based on the cultural and mycological characteristics as well as pathogenicity test on host plants, the fungus was identified as Penicillium expansum. This is the first report on the blue mold of sweet persimmon(Diospyros kaki) caused by P. expansum in Korea.

Neuroprotective effects of astringency-removed peel extracts of Diospyros kaki Thunb. cv. Cheongdo-Bansi on oxidatively-stressed PC-12 cells (청도반시(Diospyros kaki Thunb. cv. Cheongdo-Bansi) 탈삽 껍질 추출물의 산화스트레스로부터 PC-12 신경세포 보호 효과)

  • Jeong, Da-Wool;Cho, Chi Heung;Rha, Chan Su;Lee, Seung Hwan;Kim, Dae-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.538-543
    • /
    • 2017
  • Astringent persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) peel with the astringency removed, which is a by-product of dried persimmon (gotgam), was investigated for its antioxidant and neuroprotective properties. A mixture of peel and 40% (v/v) aqueous ethanol was subjected to ultrasonication and then thermal and nonthermal treatments, to produce thermally-treated and nonthermally-treated persimmon peel extracts (TPE and NTPE, respectively). The total phenolic and flavonoid contents and the antioxidant capacity of TPE was approximately 1.3-1.8 times higher than those of NTPE. TPE resulted in the increased viability of neuronal PC-12 cells compared with NTPE. Furthermore, intracellular oxidative stress in PC-12 cells was more decreased by treatment with TPE than NTPE. Cholinesterases, such as acetylcholinesterase and butyrylcholinesterase, were more inhibited by treatment with TPE than NTPE. These results suggest that TPE is useful as a functional material to decrease oxidative stress in neuronal cells and to inhibit cholinesterases.