• 제목/요약/키워드: Diospyros

Search Result 273, Processing Time 0.019 seconds

Analysis of the Planting and Use of Landscaping Plants - Focused on Weonju and Hoengseong - (조경식물의 식재와 이용 - 원주시와 횡성군을 중심으로 -)

  • Won, Jong-Hwa;Jeong, Jin-Hyung;Kim, Chang-Seop;Lee, Ki-Eui
    • Journal of Forest and Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.34-58
    • /
    • 2005
  • This study was executed to find out how to improve the planting and use of landscaping plants in Weonju and Hoengseong. 1. The number of street trees were 22,068 and the species number were 10 species in Weonju in 2004. The major species of street trees were Ginkgo biloba(58%), Prunus sargentii(15%), Zelkova serrata(9%), Prunus armeniaca var. ansu(8%), and Acer palmatum(6%). The ratio of native species versus exotic were 50:50. In Hoengseong, the number of street trees was 13,500 and the species number were 15 species. The major species of street trees were Prunus sargentii(42%), Ginkgo biloba(23%), Acer triflorum(12%), Prunus armeniaca var. ansu(6%), and Prunus mume(4%). The ratio of native species versus exotic were 67:33. The species of which planting frequency within two areas was very high were Ginkgo biloba and Prunus sargentii. 2. It is necessary to select tree species suitable for the characteristics of the locality and to raise distinctive street trees that contribute to the tourist industry. For the purpose, the appropriate street trees in two areas are Cornus controversa, Quercus aliena, Zelkova serrata, Prunus padus, Sorbus alnifolia, Sorbus comixta, Albizzia julibrissin, Acer triflorum, Styrax japonica, Chionanthus retusus, Celtis sinensis, Prunus yedoensis, Malus sieboldii, Crataegus Pinnatifida, Prunus armeniaca var. ansu and Pyrus pyrifolia etc.. 3. Appropriate pruning adds to the aesthetic and prolongs the useful life, it also requires less managing of insects and diseases to maintain good healthy of street trees. Street trees were not properly pruned due to electric lines and shortage of pruning information. The pruning was controlled by Korea Electric Power Co, which has no pruning information. Pruning must be maintained by a professional landscape company to maintain good shape such as with Bonsai. The shrubs planting zone between street trees and other trees, and preservation plates were established for healthy of street trees. They have to be repaired and maintained well to keep better environmental conditions. The proper fertilization, the control of pests and diseases, the installation of drainpipe and the use of soil brought from another place were needed to improve the planting, use and maintenance of landscape plants. 4. The species number of school trees and flowers of 102 schools in Weonju and Hoengseong were 17species, 16species respectively. The major species of school trees in Weonju were Juniperus chinensis(24%), Ginkgo biloba(17%), Pinus densiflora(14%), Zelkova serrata(14%), and Pinus koraiensis(9%), and those of school trees in Hoengseong were Pinus koraiensis(44%), Abies holophylla(25%), Juniperus chinensis(8%), and Ginkgo biloba(8%). The major species of school flowers in Weonju were Rosa centifolia(47%), Forsythia koreana(24%), Magnolia kobus(12%), and Rhododendron schlippenbachii(6%), and those of school flowers in Hoengseong were Forsythia koreana(36%), Rhododendron schlippenbachii(33%), Magnolia kobus(6%) and Dicentra spectabilis(6%). 5. The species number of the protection trees designated by Woenju and Hoengseong were 15 species. The major species of protection trees were Zelkova serrata(100 trees), Ginkgo biloba(18) Pinus densiflora(7), Quercus spp. (5), Juniperus chinensis(4) and Alnus japonica(4). 6. The landscape plants planted around 2004 in weonju were Prunus yedoensis(2,563 trees), Betula platyphylla var. japonica(2,000), Abies holophylla(1,785), Diospyros kaki(1,100), Prunus sargentii(880) and Prunus armeniaca var. ansu(708) etc.. The shrubs planted were Rhododendron obutusum(21,559 plants), Rosa centifolia (7,150), Rhododendron yedoense var. poukhanense(5,950), Forsythia koreana(3,000) and Ligustrum obtusi[olium(2,500) etc.. The landscape plants planted in Hoengseong Acer triflorum(928trees), Prunus yedoensis(455), Zelkova serrata(327), Thuja orientalis(261), Prunus sargentii(257), Pinus koraiensis(200), Prunus persica for. rubro-plena(200) and Pyrus pyrifolia (200) etc.. The shrubs planted were Rhododendron yedoense var. poukhanense(15,936), Syringa dilatata(10,090), Forsythia koreana(9,660), Cercis chinensis(3,200), Buxus microphylla var. koreana(2,600) and Rosa centifolia(1,868) etc.. 7. The species numbers of the herbaceous plants planted in 2004 in Weonju were 24 species and the ratio of native species versus exotic were 7:17. The major species of perennial plants were Aster koraiensis(30,656 plants), Coreopsis drummondii(7,656), Rudbeckia bicolor(6,000), Chrysanthemum morifolium(4,850) and Chrysanthemum zawadskii var. latilobum(4,312). The major species of annuals and biennials were Cosmos bipinnatus(672,000 plants), Zinnia elegans(35,600), Petunia hybrida(26,920), Viola tricolor(23,000), Helianthus annuus(17,000), and Geranium cinereum var. pubcaulescens(5,200). In Hoengseong, the numbers of herbaceous plants were 906,310 plants and the species numbers were 15 species. The major species of perennials plants were Aster koraiensis(70,480 plants), Hemerocallis fulva(20,070), and Phlox drummondii(18,000). The major species of annuals and biennials were Phlox hybrida(174,000 plants), Cosmos bipinnatus(125,000), Zinnia elegans(109,000), Tagetes patula(96,700), Vinca rosea(89,000) and Calendula officinalis(70,000). 8. Through these result, it was thought that the diversification of planting species, the selection of plants suitable to each space and the generalization of use of native species were needed.

  • PDF

Studies on the Kiln Drying Characteristics of Several Commercial Woods of Korea (국산 유용 수종재의 인공건조 특성에 관한 연구)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.8-12
    • /
    • 1974
  • 1. If one unity is given to the prongs whose ends touch each other for estimating the internal stresses occuring in it, the internal stresses which are developed in the open prongs can be evaluated by the ratio to the unity. In accordance with the above statement, an equation was derived as follows. For employing this equation, the prongs should be made as shown in Fig. I, and be measured A and B' as indicated in Fig. l. A more precise value will result as the angle (J becomes smaller. $CH=\frac{(A-B') (4W+A) (4W-A)}{2A[(2W+(A-B')][2W-(A-B')]}{\times}100%$ where A is thickness of the prong, B' is the distance between the two prongs shown in Fig. 1 and CH is the value of internal stress expressed by percentage. It precision is not required, the equation can be simplified as follows. $CH=\frac{A-B'}{A}{\times}200%$ 2. Under scheduled drying condition III the kiln, when the weight of a sample board is constant, the moisture content of the shell of a sample board in the case of a normal casehardening is lower than that of the equilibrium moisture content which is indicated by the Forest Products Laboratory, U. S. Department of Agriculture. This result is usually true, especially in a thin sample board. A thick unseasoned or reverse casehardened sample does not follow in the above statement. 3. The results in the comparison of drying rate with five different kinds of wood given in Table 1 show that the these drying rates, i.e., the quantity of water evaporated from the surface area of I centimeter square per hour, are graded by the order of their magnitude as follows. (1) Ginkgo biloba Linne (2) Diospyros Kaki Thumberg. (3) Pinus densiflora Sieb. et Zucc. (4) Larix kaempheri Sargent (5) Castanea crenata Sieb. et Zucc. It is shown, for example, that at the moisture content of 20 percent the highest value revealed by the Ginkgo biloba is in the order of 3.8 times as great as that for Castanea crenata Sieb. & Zucc. which has the lowest value. Especially below the moisture content of 26 percent, the drying rate, i.e., the function of moisture content in percentage, is represented by the linear equation. All of these linear equations are highly significant in testing the confficient of X i. e., moisture content in percentage. In the Table 2, the symbols are expressed as follows; Y is the quantity of water evaporated from the surface area of 1 centimeter square per hour, and X is the moisture content of the percentage. The drying rate is plotted against the moisture content of the percentage as in Fig. 2. 4. One hundred times the ratio(P%) of the number of samples occuring in the CH 4 class (from 76 to 100% of CH ratio) within the total number of saplmes tested to those of the total which underlie the given SR ratio is measured in Table 3. (The 9% indicated above is assumed as the danger probability in percentage). In summarizing above results, the conclusion is in Table 4. NOTE: In Table 4, the column numbers such as 1. 2 and 3 imply as follows, respectively. 1) The minimum SR ratio which does not reveal the CH 4, class is indicated as in the column 1. 2) The extent of SR ratio which is confined in the safety allowance of 30 percent is shown in the column 2. 3) The lowest limitation of SR ratio which gives the most danger probability of 100 percent is shown in column 3. In analyzing above results, it is clear that chestnut and larch easly form internal stress in comparison with persimmon and pine. However, in considering the fact that the revers, casehardening occured in fir and ginkgo, under the same drying condition with the others, it is deduced that fir and ginkgo form normal casehardening with difficulty in comparison with the other species tested. 5. All kinds of drying defects except casehardening are developed when the internal stresses are in excess of the ultimate strength of material in the case of long-lime loading. Under the drying condition at temperature of $170^{\circ}F$ and the lower humidity. the drying defects are not so severe. However, under the same conditions at $200^{\circ}F$, the lower humidity and not end coated, all sample boards develop severe drying defects. Especially the chestnut was very prone to form the drying defects such as casehardening and splitting.

  • PDF

Study on the Radial Variation of Structural Element in the Diffuse-Porous Woods (주요산공재(主要散孔材) 구성요소(構成要素)의 방사방향(放射方向) 변동(變動)에 관한 연구(硏究))

  • Han, Cheol-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.26-52
    • /
    • 1987
  • Among the diffuse-porous woods which arc dominant in Korea and used as construction materials due to their wood quality, ten species of six genus involving seven species of three genus in Betulaceae were studied on the radial variation of structural demenb. The species studied were Betula platyphylla var. japonica, B. ermanii, B. davurica, B. scstata, B. schmidtii, Carpinus laxifora, Alnus japonica, Prunus sargentii. Acer mono and Diospyros kaki. Wood fiber, vessel elements and ray increased rapidly in size from pith to a certain annual ring. After then the radial variation in size of the main structural elements seemed to be divided into three types; levelled off curve pattern indicating constant size(type I), continuously increasing curve pattern showing ever increase in size (type II) and parabolic curve pattern showing the gradual decrease after the maximum (type III), but the variation types by structural dements were different even in the same species. Based on the results from this study, it appears to be reasonable to consider the stabilized age of wood fiber, vessel elements and ray rather than considering wood fiber length in distinguishing mature woods from juvenile woods.

  • PDF