• Title/Summary/Keyword: Dion-Jacobson phase

Search Result 2, Processing Time 0.017 seconds

Reinvestigation of Dion-Jacobson Phases CsCa2Nb2MO9 (M = Fe and Al)

  • Hong, Young-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.853-856
    • /
    • 2006
  • Dion-Jacobson phases $CsCa_2Nb_2FeO_9$ and $CsCa_2Nb_2AlO_9$ were reinvestigated by the Rietveld analysis of powder X-ray diffraction (XRD) method, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). These nominal compounds, previously known as the oxygen-deficient layered perovskites with the sequences of $NbO_6-MO_4-NbO_6$ in tripled slab, in fact, were mixed phases of n = 3 Dion-Jacobson phases and impurities such as $Ca_2NbFeO_6$ and $Ca_3Al_2O_6$. The difference of morphology and chemical in-homogeneity between Dion-Jacobson phases and impurities could be clearly identified by scanning electron microscopy with energy-dispersive X-ray spectroscopy. The chemical composition of $CsCa_2Nb_2FeO_9$ was calculated into $Cs_{0.59}Ca_{2.64}Nb_{2.92}Fe_{0.81}$ in small agglomerate crystals and $Cs_{0.95}Ca_{1.97}Nb_{3.08}Fe_{0.15}$ in long plate-like crystals.

Exfoliation of Dion-Jacobson Layered Perovskite into Macromolecular Nanoplatelet

  • Lee, Won-Jae;Yeo, Hyun Jung;Kim, Do-Yun;Paek, Seung-Min;Kim, Young-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2041-2043
    • /
    • 2013
  • A layered perovskite of Dion-Jacobson phase, $RbLaTa_2O_7$, was successfully exfoliated into colloidal suspension via successive ion-exchange and intercalation reaction. The pristine perovskite $RbLaTa_2O_7$ was synthesized by conventional solid-state reaction, and then, it was ion-exchanged with hydrochloric acid to obtain a protonic form of perovskite. The resulting proton-exchanged perovskite was reacted with ethylamine to increase interlayer spaces for further intercalation reaction. Finally, the ethylamine-intercalated form was exfoliated into nanosheets via an intercalation of bulky organic cations (tetrabutylammonium). According to X-ray diffraction (XRD) analysis, the TBA-intercalated form showed remarkably increased interlayer spacing (${\Delta}d$ = 1.67 nm) in comparison with that of the pristine material. Transmission electron microscopic image of exfoliated perovskite clearly revealed that the present exfoliated perovskite were composed of very thin layers. This exfoliated perovskite nanosheets could be applicable as building blocks for fabricating functional nanocomposites.