• Title/Summary/Keyword: Dinitrophenol

Search Result 56, Processing Time 0.027 seconds

Proton Effect on the Degradation of Phenolic Compound by Activated Sludge and Nocardia asteroides (활성슬러지 혼합미생물과 Nocardia asteroides에 의한 페놀화합물 분해시 양성자이온의 영향)

  • 조관형;조영태;우달식
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.561-567
    • /
    • 2002
  • This study was investigated to evaluate the effect of the sodium ion and pH on toxicity of dinitrophenol at high concentrations (0.41 to 0.54 mM), over a sodium concentration range of 0.1 mM to 107 mM and over a pH range of 5 to 9. The concentration of sodium ions in the activated sludge mixed liquor seemed to have very little effect on dinitrophenol toxicity. However, lack of sodium in the growth media resulted in a reduction of the dinitrophenol degradation rate by bacterial isolate from the activated sludge culture, which has been identified as Nocardia asteroides. Dinitrophenol inhibition was found to be strongly dependent on mixed liquor pH. The dinitrophenol degradation rate was highest in the pH range of 6.95 to 7.84; at pH 5.94 degradation of 75 mg/L dinitrophenol was significantly inhibited; at pH < 5.77, dinitrophenol degradation was completely inhibited after approximately 30% of the dinitrophenol was degraded.

pH Effect on the Aerobic Biodegradation of Nitrophenolic Compound in SBR (니트로페놀화합물의 호기성생물분해시 pH 영향에 관한 연구)

  • Jo, Kwan-Hyung
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.779-784
    • /
    • 2007
  • Dinitrophenol is preventing cells from making energy for growth and it has been suggested that pH may be important in mitigating effects of uncouplers. The effect of pH on toxicity of dinitrophenol at high concentration was investigated, over a pH range of 5.7 to 8.7. DNP inhibition was found to be strongly dependent on mixed liquor pH. The DNP degradation rate was highest in the pH range of 7.0 to 7.8; at pH 6.0 degradation of 0.41 mM dinitrophenol was significantly inhibited; at pH <5.7, dinitrophenol degradation was completely inhibited after approximately 25% of the dinitrophenol was degraded. However no significant effect of pH variation was seen on glucose uptake by the activated sludge mixed culture.

The Effects of Phenol on Biokinetic Coefficient of Multiple Phenol Derivatives of 2,4-Dichlorophenol and 2,4-Dinitrophenol in Activated Sludge Process (활성슬러지공정에서 페놀이 2,4-디클로로페놀과 2,4-디니트로페놀을 함유한 복합페놀폐수의 미생물분해계수에 미치는 영향)

  • Lim, Gye-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.349-353
    • /
    • 1999
  • A study was carried out to see the effects of phenol on the biological degradation of a wastewater containing 2,4-dichlorophenol and 2,4-dinitrophenol and the biodegradation kinetic coefficients of Eckenfelder's modified model for the activated sludge process. The system containing base mix (BM) which was formulated with essential energy sources and nutrients was run down and washed out when 2,4-dichlorophenol and 2,4-dinitrophenol was introduced into the base mix unit without acclimation to phenol. Whereas for the system acclimated to phenol, the treatment efficiency was 91.9% in terms of $BOD_5$ and treatability for each chemical of phenol, 2,4-dichlorophenol, and 2,4-dinitrophenol was 99.8%, 43.3% and 62.5% based on concentration, respectively. Additional BM was added into the combined unit containing phenol, 2,4-dichlorophenol, 2,4-dinitrophenol so that the better treatment efficiency was achieved for each compound. The biokinetic coefficient of Eckenfelder's modified model without phenol acclimation was not estimated because the system did not reach the steady state. Thc coefficient for the phenol acclimation was 12.44 /day, however it was changed as 46.91 /day in addition of both of phenol acclimation and 47 mg/l of BM. The results presented above could be useful for the process design and further study in the field of biodegradation of benzene derivatives.

  • PDF

Studies on in vivo Nitrate Reduction in Rye (Secale cereale L.) Seedlings Treated with 2,4-Dinitrophenol II. Effect of 2,4-Dinitrophenol on in vivo Nitrate Reductase Activity in the Roots of Rye Seedlings (2,4-Dinitrophenol을 처리한 호밀(Secale cereale L.) 유식물의 질산염 환원에 관한 연구 II. 호밀 유식물 뿌리의 질산염 환원효소 활성에 대한 2,4-Dinitrophenol의 영향)

  • 조규찬
    • Journal of Plant Biology
    • /
    • v.34 no.4
    • /
    • pp.283-288
    • /
    • 1991
  • This work was carried out to determined the effect of 2,4-dinitrophenol(DNP) on in vivo nitrate reductase activity in the root of 6 day old rye (Secale cereale L.) seedlings. The nitrate reductase activity in the roots of 6 day old rye seedlings pretreated with 0.5 mM DNP was higher than that of the control group in all the experimental conditions. The optimal concentration of KNO3 for maximum nitrate reductase activity was 10 mM in both control and treated group. The nitrate reductase activity in the treatment of 10 mM KNO3 gradually increased for 4 h in both groups, and then maintained constantly. The nitrate reductase activity occurred per hour was highest at 1 h in both groups, while it was declined by large degrees as time goes on. The daily pattern of nitrate reductase activity was gradually decreased in both groups with the passage of day. The optimal pH for this experiment and a previous paper (Kwon et al., 1991), it was determined that the nitrate reductase activity in both roots and shoots of rye seedlings was increased by the treatment of 0.5 mM DNP, and particulary in both groups, the nitrate reductase activity in the roots of rye seedlings was higher than that in shoots of them.

  • PDF

Removal of 2,4-Dinitrophenol from an Aqueous Solution by Wood-Based Activated Carbon (목질계 활성탄을 이용한 수중의 2,4-Dinitrophenol 흡착 제거)

  • Ju, Chang-Sik;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.609-619
    • /
    • 2017
  • The removal characteristics of 2,4-dinitrophenol (2,4-DNP) from an aqueous solution by commercial Wood-based Activated Carbon (WAC) have been studied. The effects of various experimental parameters were investigated using a batch adsorption technique. The adsorption capacity of 2,4-DNP by WAC increased with a decrease in the dosage and particle size of WAC, temperature and the initial pH of the solution, and increased with an increase in the initial concentration of the solution. The adsorption equilibrium data were best described by the Redlich-Peterson isotherm model. The maximum adsorption capacities of 2,4-DNP by WAC were 573.07 mg/g at 293 K, 500.00 mg/g at 313 K, and 476.19 mg/g at 333 K, decreasing with increasing temperature. The kinetic data were well fitted to the pseudo-second-order model, and the results of the intra-particle diffusion model suggested that the adsorption process was mainly controlled by particle diffusion. The thermodynamic analysis indicated that the adsorption of 2,4-DNP by WAC was an endothermic and spontaneous process.

Effect of pH on the Degradation of 2, 4-Dinitrophenol in Sequencing Batch Reactor Process (연속회분식(連續回分式) 처리공정(處理工程)에 의한 2, 4-Dinitrophenol분해시(分解時) pH의 영향(影響))

  • Jo, Kwan-Hyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.96-101
    • /
    • 1998
  • Substrate inhibition of 2,4-dinitrophenol (DNP) degradation was investigated using activated sludge which had been adapted to mineralize DNP. DNP is a metabolic uncoupler, preventing cells from making energy for growth and it has been suggested that pH may be important in mitigating effects of uncouplers. After acclimation of the activated sludge, the effect of pH on toxicity of DNP at high concentration (75 mg/L) was investigated, over a pH range of 5 to 9. DNP inhibition was found to be strongly dependent on mixed liquor pH. The DNP degradation rate was highest in the pH range of 6.95 to 7.84; at pH 5.94 degradation of 75 mg/L DNP was significantly inhibited; at pH < 5.77, DNP degradation was completely inhibited after approximately 30% of the DNP was degraded. By comparison, no significant effect of pH variation in the same range was seen on glucose uptake by the activated sludge culture.

  • PDF

Studies on Antifungal Substances Produced by a 2,4-dinitrophenol Resistant Soil Streptomyces spp.

  • Lee, Young-Nam;Yun, Yeo-Pyo;Lee, Do-Hoon;Hwang, Yoo-Sung;Lee, Hyeong-Kyu;Jang, Seung-Jae;Lee, Se-Chang
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.68-68
    • /
    • 1995
  • 청주 근처 토양에서 분리한 에너지 대사 저해제인 2,4-dinitrophenol (DNP)에 내성을 보이는 Streptomyces CM 001 균주가 생산하는 항진균성 물질(CUA)을 순수하게 분리 정제하고 화학분석을 통한 구조의 규명, 항진균활성 연구 및 유전적 변이원성(mutagenicity)등을 살펴보았다. CM 001 균주를 베네트 배지와 같이 영양성이 좋은 배지에서 배양시 항진균 활성이 동반 생성되는 색소와 비례적으로 증가했다. 배양 상등액 속의 항진균성 물질들을 염산처리, 유기용매처리 후 Amberlite XAD-4 column chromatography, silica gel adsorption-Sephadex LH-20 chromatography 과정을 통해 색소가 제거된 부분 정제 백색분말로 얻었다 이로부터 Prep. HPLC과정을 통하여 8종의 화합물을 각기 분리하였는데 이 화합물들은 동일한 UV spectrum과 216, 260nm에서 최대 흡수파장을 보였다.

  • PDF

Crystal Structures and Thermal Properties of 2,6-Dinitrophenol Complexes with Lanthanide Series

  • Kim, Eun-Ju;Kim, Chong-Hyeak;Kim, Jae-Kyung;Yun, Sock-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1157-1161
    • /
    • 2008
  • 2,6-Dinitrophenol (2,6-DNP) complexes with lanthanide series including yttrium (except Pm, Tm, and Lu) have been synthesized and their crystal structures have been analyzed by X-ray diffraction methods. Singlecrystal X-ray structure determinations have been performed at 296 K on the Ce$\rightarrow$Yb species and shown them to be isomorphous, triclinic, P1, a = 8.6558(2)$\rightarrow$8.5605(3) $\AA$, b = 11.8813(3)$\rightarrow$11.6611(4) $\AA$, c = 13.9650(3) $\rightarrow$13.8341(5) $\AA$, $\alpha$ = 73.785(1)$\rightarrow$73.531(2)o, $\beta$ = 74.730(1)→74.903(2)${^{\circ}}$, $\gamma$ = 69.124(1)→ 69.670 $(2){^{\circ}}$, V = 1266.86(5)→1221.53(7) $$\AA^{3}$$, Z = 2. In Ln(III) complexes, three 2,6-DNP ligands coordinate directly to the metal ion in the bidentate fashion. The nine coordinated Ln(III) ion forms slightly distorted tri-capped trigonal prism. There are no water molecules in the crystal lattice. The dependences of metal to ligand bond lengths are discussed on the atomic number of lanthanide elements. The thermal properties of lanthanide complexes of 2,6- DNP have also studied by TG-DTG and DSC thermal analysis methods.

Removal of heavy metal and Hydrogen sulfide/Nitrophenol using Mackban-stone (맥반석을 이용한 중금속과 악취물질/nitrophenol의 제거)

  • Quen, Zhe-Xue;Yin, Cheng-Ri;Jin, Yin-Shu;Seok, Mi-Soo;Lee, Sung-Taik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 2001
  • Mackban-stone effectively removed heavy metals, such as Fe, Cu, Cd, and Zn, with best removal of Fe and Cu. And the removal of heavy merals related with ion exchange of Ca. Mackban-stone is also an efficient deodorant of hydrogen sulfide and ammonia and inhibited the growth of E coli. The degradation rare of 4-nitropheno1 by Nocardioides sp. PNP101 and 2,4-dinitrophenol by Strain CJ1 and Rhodococcus sp. DNP 505 are increased by Mackbane-srone.

  • PDF