• 제목/요약/키워드: Dimple Inner Structure Plate

검색결과 4건 처리시간 0.017초

미세 딤플 내부구조재 제작을 위한 롤 성형기술 연구 (A Study on Roll Forming Technology for Inner Structure Plate with Micro Dimple)

  • 제태진;김형종;김보환;허병우;성대용;양동열;최두선
    • 소성∙가공
    • /
    • 제15권4호
    • /
    • pp.326-332
    • /
    • 2006
  • Sandwich structures, which are composed of a thick core between two faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. Depending on the sheets by a rolling process, which is a more efficient and economical approach compared to other types of processes, has become an increasingly important subject of study. In this paper, we made a roll forming machine which progressive forming possible and force measurement for a roll forming of the sheet metal forming. And we designed a roll molding that arrayed of embossing size 3mm in diameter fabricate micro dimple inner structure plate. We carried out forming experiment such as array change and thickness to sts304 sheet. Ultimately, this research developed inner structure plate of high stiffness.

굽힘 하중을 받는 딤플형 금속 샌드위치판재의 최적설계 (Optimal Design of Metallic Sandwich Plates with Inner Dimpled Shell Subjected to 3-Point Bending)

  • 성대용;정창균;윤석준;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.702-705
    • /
    • 2005
  • Metallic sandwich plates with Inner dimpled shell subjected to 3-point bending have been analyzed and then optimized for minimum weight. Inner dimpled shells can be easily fabricated by press or roll with high quality precision and bonded with same material skin sheets by resistance welding or adhesive bonding process. Optimized shape of inner dimple is a hemispherical shell to minimize weight without failure, including face yielding, face buckling and inner dimple buckling. It is demonstrated that bending stiffness of sandwich plate is 2 or 3 times than solid plates with same strength

  • PDF

굽힘 하중을 받는 딤플형 내부구조 금속 샌드위치 판재의 최적설계변수의 수식화 및 파손선도 (Formulation of Optimal Design Parameters and Failure Map for Metallic Sandwich Plates with Inner Dimpled Shell Structure Subject to Bending Moment)

  • 성대용;정창균;윤석준;안동규;양동열
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.127-136
    • /
    • 2006
  • Metallic sandwich plates with inner dimpled shell subject to 3-point bending have been analyzed and then optimized for minimum weight. Inner dimpled shells can be easily fabricated by press or roll with high precision and bonded with same material skin sheets by resistance welding or adhesive bonding. Metallic sandwich plates with inner dimpled shell structure can be optimally designed for minimum weight subject to prescribed combination of bending and transverse shear loads. Fundamental findings for lightweight design are presented through constrained optimization. Failure responses of sandwich plates are predicted and formulated with an assumption of narrow sandwich beam theory. Failure is attributed to four kinds of mechanisms: face yielding, face buckling, dimple buckling and dimple collapse. Optimized shape of inner dimpled shell structure is a hemispherical shell to minimize weight without failure. It is demonstrated that bending stiffness of sandwich plate is 2 or 3 times larger than solid plates with the same strength. Failure mode boundaries and iso-strength lines dependent upon the geometry and yield strain of the material are plotted with respect to geometric parameters on the failure map. Because optimal parameters of maximum strength for given material weight can be selected from the map, analytic solutions for maximum strength are expressed as a function of only material property and proposed strength. These optimal parameters match well with numerical optimal parameters.

$6mm^t$조선용 프라이머 코팅강판의 $CO_2$레이저 용접성 (II) - 레이저 용접현상의 동적거동과 기공 및 증발입자의 조성 - (The Weldability of $6mm^t$ Primer-coated Steel for Shipbuilding Using $CO_2$ Laser (II) - Dynamic Behavior of Laser Welding Phenomenon and Composition of Porosity and Vaporized-particle -)

  • 김종도;박현준
    • Journal of Welding and Joining
    • /
    • 제24권2호
    • /
    • pp.71-78
    • /
    • 2006
  • It has been reported that good quality weld beads are not easily obtained during the $CO_2$ CW laser welding of primer coated plate. However, by introducing a small gap clearance in the lap position, the zinc vapor can escape through it and sound weld beads can be acquired. Therefore, this study examines for keyhole behavior by observing the laser-induced plasma and investigates the relation between keyhole behavior and formation of weld defect. Laser-induced plasma has accompanied with the vaporizing pressure of zinc ejecting from keyhole to surface of primer coated plate. This dynamic behavior of plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser welding. As a result of observing the composition of porosity, much of Zn element was found from inner surface of porosity. But Zn was not found from the dimple structure fractured at the weld metal. By analyzing of vaporizing element in laser welding, a component ratio of Zn was decreased by introducing a small gap clearance. Therefore we can prove that the major cause of porosity is the vaporization of primer in lap position. Mechanism of porosity-formation is that the primer vaporized from the lap position accelerates dynamic behavior of the key hole and the bubble separated from the key hole is trapped in the solidification boundary and romaines as porosity.