• 제목/요약/키워드: Dimethyl-ether(DME)

검색결과 157건 처리시간 0.024초

디젤엔진조건에서 DME분무의 연소특성 해석 (Parametric Study of DME Spray Combustion Characteristics in the Diesel-like Condition)

  • 배준경;강성모;김용모
    • 한국분무공학회지
    • /
    • 제14권4호
    • /
    • pp.163-170
    • /
    • 2009
  • The present study has numerically investigates the vaporization, auto-ignition and combustion processes in the high-pressure and high-temperature conditions encountered in the diesel engine. In the present study, in order to understand the overall spray combustion characteristics of DME fuel as well as to identify the distinctive differences of DME combustion processes compared to conventional hydrocarbon liquid fuels, the sequence of the comparative analysis has been systematically made for DME and n-Heptane liquid fuels. Computations for DME fuel are made for two cases including constant fuel mass flow rate condition and fixed heat release rate. Based on numerical results, the discussions are made for the detailed combustion processes of DME and n-Heptane spray.

  • PDF

CGO 담지 귀금속 촉매를 이용한 DME 자열개질 특성 연구 (Experiment of DME autothermal reforming with CGO-based catalysts)

  • 최승현;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.158.2-158.2
    • /
    • 2011
  • DME is acronym of dimethyl ether, which is spotlighted as an ideal fuel to produce hydrogen due to its high hydrogen/carbon ratio, high energy density and easiness to carry. In this research, we calculated thermodynamic hydrogen (or syngas) yield from DME autothermal reforming and compared to other fuels. The reforming efficiency was about 80% above $700^{\circ}C$. Lower OCR has higher reforming efficiency but, it requires additional heat supply since the reactions are endothermic. SCR has no significant effect on the reforming efficiency. The optimized condition is $700^{\circ}C$, SCR 1.5, OCR 0.45 without additional heat supply. Comparing to other commercial gaseous fuels (methane and propane), DME has higher selectivity of $H_2O$ and $CO_2$ than the others due to the oxygen atom in the molecule. To apply DME autothermal reforming to real system, a proper catalyst is required. Therefore, it is performed the experiment comparing various novel metal catalysts based on CGO. Experiments were performed at calculated condition. The composition of product was measured and reforming efficiency was calculated. The catalysts have similar efficiency at high temperature(${\sim}800^{\circ}C$) but, CGO-Ru has the highest efficiency at low temperature ($600^{\circ}C$).

  • PDF

4기통 커먼레일 DME 엔진의 분사조건 보정방법에 대한 연구 (Research on the Injection Condition Calibration Process of a Common-rail DME Fueled Engine)

  • 정재우;강정호;김남호;정수진;이호길;강우
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.147-156
    • /
    • 2008
  • As the management of fuel efficiency becomes globally reinforced in attempts to find an environment-friendly vehicle that will operate against global warming, the interest in and the demand for the type of vehicle with a high-efficiency diesel engine using light oil. However, it also emits a greater amount of PM (particulate matter) and NOx than emissions from vehicles using other types of fuels. Therefore, the DME (Dimethyl Ether), an oxygen containing fuel draws attention as an alternative fuel for light oil that can be used for diesel engines since it generates very little smoke. But to develop and compare performance of an electric controlled common-rail DME engine, engine tests requires optimized injection conditions at required engine RPM and engine torque. These injection conditions cannot be set freely and the data configuration through the experimentally repeated application requires much time as well as a significant amount of errors and effort. The object of this study is to configure the basic injection map using the results of the DME engine experiments performed so far. For this, in this study, the functionalization of the required equations were performed along with the basic review of the factors that had influence on the data map. Through this, the information on the injection pressure, injection amount, injection duration, injection timing, etc. under certain operation condition could be obtained.

수소 생산을 위한 Cu/ZnO/Al2O3 촉매상에서 DME의 수증기 개질 반응 연구 (A Study on the Steam Reforming Reaction of DME on Cu/ZnO/Al2O3 Catalyst for Hydrogen Production)

  • 변현승;구윤지;오주희;반재성;나영진;이제설;조원준
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.581-586
    • /
    • 2023
  • As the development of alternative energy is required due to the depletion of fossil fuels, interest in the use of hydrogen energy is increasing. Hydrogen is a promising clean energy source with high energy density and can lead to the application of environmentally friendly technologies. However, due to difficulties in production, storage, and transportation that prevent the application of hydrogen-based eco-friendly technology, research on reforming reactions using dimethyl ether (DME) is being conducted. Unlike other hydrocarbons, DME is attracting attention as a hydrogen carrier because it has excellent storage stability and transportability, and there is no C-C bond in the molecule. The reaction between DME and steam is one of the reforming processes with the highest hydrogen yield in theory at a temperature lower than that of other hydrocarbons. In this study, a hydrogen reforming device using DME was developed and a catalyst prepared by supporting Cu in alumina was put into a reactor to find optimal hydrogen production conditions for supplying hydrogen to fuel cells while changing reaction temperature (300-500℃), pressure (5-10 bar), and steam/carbon ratio (3:1 to 5:1).

DME 분리공정의 열역학적 해석에 대한 연구 (A Study on the Thermodynamic Analysis for the DME Separation Process)

  • 조정호;김영우
    • 한국산학기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.590-596
    • /
    • 2010
  • 본 연구에서는 디젤대체 연료와 LPG 혼합용 및 도시 가스의 발열량을 높이기 위한 첨가제로 사용할 수 있는 DME 분리공정에 대한 올바른 열역학 모델식의 선정에 대한 해석을 시도하였다. 물과 메탄올 용매 사이의 액상에서의 비이상성을 해석하기 위해서 NRTL 액체 활동도계수 모델식을 사용하였으며, 기상에서 이상기체의 비이상성을 해석하기 위해서 Peng-Robinson 상태방정식을 사용하였다. 한편, Methanol absorber에서 메탄올 수용액 중의 $H_2$, CO, $CO_2$, $H_2$, $CH_4$$N_2$ 등과 같은 비응축성 기체의 용해도를 추산하기 위해서 온도와 압력의 함수로 나타낸 Henry parameter를 사용하였다. 사례 연구를 통해서 원료에 대한 용매의 몰 유량비가 3.40일 때 최적이 됨을 알 수 있었다.

담지된 SAPO-34 촉매상에서 DME(dimethyl ether) 전환 연구 (The Study on DME (dimethyl ether) Conversion Over the Supported SAPO-34 Catalyst)

  • 이수경;유병관;제한솔;류태공;박주식;김영호
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.232-239
    • /
    • 2011
  • DME has received much attention because of its possible use as a fuel and a chemical feedstock. Chemical conversion of DME to olefin (DTO) over various SAPO-34 catalysts was carried out using a fixed bed reactor. Main products of the reaction were light olefins such as ethylene, propylene and butenes. The best reaction conditions for high life time of the catalyst and high selectivity of light olefins were a reaction temperature of $400^{\circ}C$ and a WHSV of $3.54h^{-1}$. In addition, it was found that the deactivation of a SAPO-34 catalyst can be significantly suppressed by the addition of $ZrO_2$ as a supporter.

디젤 및 DME 연료의 거시적 분무특성 비교 (Comparisons of Diesel and DME Fuel in Macroscopic Spray Characteristics)

  • 박준규;전문수;박성욱
    • 한국분무공학회지
    • /
    • 제17권4호
    • /
    • pp.205-209
    • /
    • 2012
  • This study focused on comparing macroscopic characteristics of DME and diesel fuel experimentally. DME fuel is one of the most promising alternative fuels because of its superiority in atomization characteristic and clearness in terms of exhaust gas compared with existing fossil fuels. In addition, DME fuel has high cetane number so it could be applied to compression ignition engine. However because DME fuel exists in gas phase at room temperature and atmospheric pressure, and it corrodes rubber parts of fuel line, DME fuel is hard to apply to commercial vehicles. To establish knowledge about DME fuel and furthermore, to develop commercial DME vehicles such as passenger cars, many research have been proceeded steadily. The present study, by comparing spray characteristics of DME fuel to those of diesel fuel, improved atomization characteristics in DME were revealed. Injection quantity measurement and spray visualization experiment were progressed and it was revealed that DME fuel shows small injection quantity than that of diesel fuel and axial development of spray in terms of spray tip penetration decreases when DME fuel was injected.

DME FPSO선박의 탱크해석 및 Rolling 유동에 따른 증발 실험연구 (Analysis for DME FPSO Storage Tank and Experimental Study on the DME Evaporation Rate by Rolling Motion of Ship)

  • 윤상국;조원준;백영순
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권8호
    • /
    • pp.1010-1015
    • /
    • 2012
  • DME는 천연가스로부터 합성할 수 있는 대량의 에너지원이 된다. 한국가스공사는 DME 상업규모의 생산플랜트를 개발하고 이의 국내 공급을 위해 해외 자원 확보를 추진하고 있다. 본 논문은 응력과 변형 해석을 통하여 DME저장탱크의 설계기준을 제공하였고, DME FPSO저장탱크의 증발현상을 파악하기 위하의 증발을 발생시키는 원인인 열유입과 선박의 유동에 따른 증발량 실험을 수행하였다. 실험결과, 롤링의 각도가 커지고 액체 충전량이 많을수록 증발량이 증가하였다. 롤링각도가 15도 일 때의 증발량은 정지상태의 열유입 만에 의한 증발량 보다 약 20%가 증가하였다.

DME를 착화촉진제로 사용한 가솔린 예혼합 압축 착화 엔진의 연소 특성 (Combustion Characteristics of Gasoline HCCI Engine with DME as an Ignition Promoter)

  • 염기태;장진영;배충식
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.178-185
    • /
    • 2006
  • This paper investigates the steady-state combustion characteristics of the Homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out its benefits in exhaust gas emissions. HCCI combustion is an attractive way to lower carbon dioxide($CO_2$), nitrogen oxides(NOx) emission and to allow higher fuel conversion efficiency. However, HCCI engine has inherent problem of narrow operating range at high load due to high in-cylinder peak pressure and consequent noise. To overcome this problem, the control of combustion start and heat release rate is required. It is difficult to control the start of combustion because HCCI combustion phase is closely linked to chemical reaction during a compression stroke. The combination of VVT and DME direct injection was chosen as the most promising strategy to control the HCCI combustion phase in this study. Regular gasoline was injected at intake port as main fuel, while small amount of DME was also injected directly into the cylinder as an ignition promoter for the control of ignition timing. Different intake valve timings were tested for combustion phase control. Regular gasoline was tested for HCCI operation and emission characteristics with various engine conditions. With HCCI operation, ignition delay and rapid burning angle were successfully controlled by the amount of internal EGR that was determined with VVT. For best IMEP and low HC emission, DME should be injected during early compression stroke. IMEP was mainly affected by the DME injection timing, and quantities of fuel DME and gasoline. HC emission was mainly affected by both the amount of gasoline and the DME injection timing. NOx emission was lower than conventional SI engine at gasoline lean region. However, NOx emission was similar to that in the conventional SI engine at gasoline rich region. CO emission was affected by the amount of gasoline and DME.

DME 예혼합기를 분위기로 하는 디젤 분무의 연소에 관한 연구 (The investigation of Diesel Spray Combustion in DME HCCI)

  • 임옥택;노리마사 이이다
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3329-3334
    • /
    • 2007
  • The purpose of the research is to investigate of diesel spray combustion for simultaneously reduce way NOx and PM. The pressure diesel injection were done into intermediates that are generated by very lean DME HCCI combustion using a RCM. The concentration of intermediate could not be directly measured; we estimated it by CHEMKIN calculation. DME HCCI characteristic is surveyed. Validations of the CHEMKIN calculation were confirmed pressure rise of an experiment and pressure rise of a calculation. Using a framing streak camera captured two dimensional spontaneous luminescence images from chemical species at low temperature reaction(LTR) and high temperature reaction (HTR). Also, the combustion events were observed by high-speed direct photography, the ignition and combustion were analyzed by the combustion chamber pressure profiles.

  • PDF