• 제목/요약/키워드: Dimensions Decrease Techniques

검색결과 2건 처리시간 0.015초

차원감소기법과 은닉마아코프모델을 이용한 경기지표 예측 모델 연구 (A Study of Economic Indicator Prediction Model using Dimensions Decrease Techniques and HMM)

  • 전진호;김민수
    • 디지털융복합연구
    • /
    • 제11권10호
    • /
    • pp.305-311
    • /
    • 2013
  • 경제시장의 규모가 지속적으로 발전함에 따라 올바른 의사결정을 위하여 경제시장을 정확하게 예측하는 문제가 중요한 문제로 떠오르고 있다. 현대 경제시스템을 표현하는 다양한 경제지표 중 가장 큰 축인 주식지표의 올바른 이해와 분석 그리고 의사결정문제에 적용을 위하여 시계열자료의 모델에 적합한 은닉마아코프모델과 이를 토대로 시계열자료의 시간 및 계산비용의 절감을 위한 차원감소기법들을 모델의 추정과 예측 문제에 적용하였으며 그 유효성을 확인하였다. 실험 결과, 은닉마아코프모델과 차원감소기법을 적용한 모델 모두에서 장기예측보다는 단기의 예측에서 최적의 모델 추정과 유사패턴 예측률이 모두 실제의 자료와 매우 유사함을 확인할 수 있었다.

ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구 (A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder)

  • 신병진;이종훈;한상진;박충식
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.57-73
    • /
    • 2021
  • ICT 인프라의 이상탐지를 통한 유지보수와 장애 예방이 중요해지고 있다. 장애 예방을 위해서 이상탐지에 대한 관심이 높아지고 있으며, 지금까지의 다양한 이상탐지 기법 중 최근 연구들에서는 딥러닝을 활용하고 있으며 오토인코더를 활용한 모델을 제안하고 있다. 이는 오토인코더가 다차원 다변량에 대해서도 효과적으로 처리가 가능하다는 것이다. 한편 학습 시에는 많은 컴퓨터 자원이 소모되지만 추론과정에서는 연산을 빠르게 수행할 수 있어 실시간 스트리밍 서비스가 가능하다. 본 연구에서는 기존 연구들과 달리 오토인코더에 2가지 요소를 가미하여 이상탐지의 성능을 높이고자 하였다. 먼저 다차원 데이터가 가지고 있는 속성별 특징을 최대한 부각하여 활용하기 위해 멀티모달 개념을 적용한 멀티모달 오토인코더를 적용하였다. CPU, Memory, network 등 서로 연관이 있는 지표들을 묶어 5개의 모달로 구성하여 학습 성능을 높이고자 하였다. 또한, 시계열 데이터의 특징을 데이터의 차원을 늘리지 않고 효과적으로 학습하기 위하여 조건부 오토인코더(conditional autoencoder) 구조를 활용하는 조건부 멀티모달 오토인코더(Conditional Multimodal Autoencoder, CMAE)를 제안하였다. 제안한 CAME 모델은 비교 실험을 통해 검증했으며, 기존 연구들에서 많이 활용된 오토인코더와 비교하여 AUC, Accuracy, Precision, Recall, F1-score의 성능 평가를 진행한 결과 유니모달 오토인코더(UAE)와 멀티모달 오토인코더(Multimodal Autoencoder, MAE)의 성능을 상회하는 결과를 얻어 이상탐지에 있어 효과적이라는 것을 확인하였다.