• Title/Summary/Keyword: Dimensionless Variables

Search Result 97, Processing Time 0.024 seconds

An experimental study on flow distribution and mixing in impinging jets (충돌제트의 유량분포 및 혼합특성에 관한 실험적 연구)

  • Lee, Chung-Hun;Jeong, Yeong-Ho;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.99-112
    • /
    • 1997
  • Mixing process of impinging jets of liquid oxidizer and liquid fuel is simulated by using water and sodium carbonate (Na$_{2}$CO$_{3}$) solution. The shapes of liquid sheets are visualized and flowrate distributions are measured by collecting droplets using measuring cells. Mixing charateristics are studied by using acid-base titration. Stable liquid sheets are formed and two liquid jets are well mixed for symmetric impinging jets. Similarity in flowrate distribution for various measuring heights is observed. For asymmetric impinging jets, liquid sheets become unstable as the difference in the velocities of jets increases. In some extreme cases, liquid sheets are not formed and the jets are separated. Dimensionless variables are adopted demonstrating similarly in flowrate distribution. Mixing characteristics vary significantly with experiment conditions.

Voltage-Resonant Type DC-DC Converter Using A-SCR (A-SCR을 사용한 전압 공진형 DC-DC 콘버어터)

  • Jung, Won-Young;Hwang, Don-Ha;Bae, Ki-Hoon;Ro, Chae-Cyun;Bae, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1029-1031
    • /
    • 1992
  • This paper discussed the operational principles and characteristics of Voltage-Resonant Type DC-DC Converter of HF-Bridge Inverter Switching Control using A-SCR as switching elements. The characteristics of DC/DC Converter circuits were analyzed using the diagrams of design circuits and dimensionless control variables.

  • PDF

In-plane Vibration Analysis of Rotating Cantilever Curved Beams

  • Zhang, Guang-Hui;Liu, Zhan Sheng;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1045-1050
    • /
    • 2007
  • Equations of motion of rotating cantilever curved beams are derived based on a dynamic modeling method developed in this paper. The Kane's method is employed to derive the equations of motion. Different from the classical linear modeling method which employs two cylindrical deformation variables, the present modeling method employs a non-cylindrical variable along with a cylindrical variable to describe the elastic deformation. The derived equations (governing the stretching and the bending motions) are coupled but linear. So they can be directly used for the vibration analysis. The coupling effect between the stretching and the bending motions which could not be considered in the conventional modeling method is considered in this modeling method. The natural frequencies of the rotating curved beams versus the rotating speed are calculated for various radii of curvature and hub radius ratios.

  • PDF

Velocity and Friction Force Distribution in Rotary CMP Equipment (회전형 CMP장비의 속도 및 마찰력 분포 해석)

  • Kim, Hyeong Jae;Jeong, Hae Do;Lee, Eung Suk;Sin, Yeong Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.39-39
    • /
    • 2003
  • As the design rules in semiconductor manufacturing process become more and more stringent, the higher degree of planarization of device surface is required for a following lithography process. Also, it is great challenge for chemical mechanical polishing to achieve global planarization of 12” wafer or beyond. To meet such requirements, it is essential to understand the CMP equipment and process itself. In this paper, authors suggest the velocity distribution on the wafer, direction of friction force and the uniformity of velocity distribution of conventional rotary CMP equipment in an analytical method for an intuitive understanding of variation of kinematic variables. To this end, a novel dimensionless variable defined as “kinematic number” is derived. Also, it is shown that the kinematic number could consistently express the velocity distribution and other kinematic characteristics of rotary CMP equipment.

Velocity and Friction Force Distribution in Rotary CMP Equipment (회전형 CMP장비의 속도 및 마찰력 분포 해석)

  • 김형재;정해도;이응숙;신영재
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.29-38
    • /
    • 2003
  • As the design rules in semiconductor manufacturing process become more and more stringent, the higher degree of planarization of device surface is required for a following lithography process. Also, it is great challenge for chemical mechanical polishing to achieve global planarization of 12” wafer or beyond. To meet such requirements, it is essential to understand the CMP equipment and process itself. In this paper, authors suggest the velocity distribution on the wafer, direction of friction force and the uniformity of velocity distribution of conventional rotary CMP equipment in an analytical method for an intuitive understanding of variation of kinematic variables. To this end, a novel dimensionless variable defined as “kinematic number” is derived. Also, it is shown that the kinematic number could consistently express the velocity distribution and other kinematic characteristics of rotary CMP equipment.

Flapwise Bending Vibration of Rotating Cantilever Beams (회전 외팔보의 면외방향 굽힘진동 해석)

  • 유홍희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.348-353
    • /
    • 1995
  • When cantilever beams rotate, their bending stiffnesses change due to the stretching caused by centrifugal inertia forces. Such phenomena result in variations of natural frequencies and mode shapes associated with constant speed rotational motions of the beams. These variations are important in many practical applications such as helicopter blades, turbomachines, and space structures. This paper presents the formulation of a set of linear equations governing the flapwise bending vibration of rotating cantilever beams. These equations can be used to provide accurate predictions of the variations of natural frequencies and mode shapes due to rotation.

Flapwise Bending Vibration Analysis of Rotating Composite Cantilever Beams (복합재 회전 외팔보의 면외방향 굽힘진동 해석)

  • Lee, Seung-Hyun;Shin, Sang-Ha;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.887-892
    • /
    • 2003
  • A modeling method for the modal analysis of a rotating composite beam is presented in this paper. Linear differential equations of motion are derived by using the assumed mode method. For the modeling, hybrid deformation variables are employed and approximated to derive the equations of motion Symmetrical laminated layers are considered for the composite beam. The effects of the dimensionless angular velocity, the hub radius and the fiber orientation angle parameter on the variations of modal characteristics are investigated.

  • PDF

Flapwise Bending Vibration Analysis of Rotating Composite Cantilever Beams

  • Lee, Seung-Hyun;Shin, Sang-Ha;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.240-245
    • /
    • 2004
  • A modeling method for the modal analysis of a rotating composite cantilever beam is presented in this paper. Linear differential equations of motion are derived using the assumed mode method. For the modeling, hybrid deformation variables are employed and approximated to derive the equations of motion. Symmetrical laminated composite beams are considered to obtain the numerical results. The effects of the dimensionless angular velocity, the hub radius and the fiber orientation angle on the variations of modal characteristics are investigated.

Optimization of Geometrically, Thermally Asymmetric Trapezoidal Fins with a View of Effectiveness (유용성의 측면에서 기하학적, 열적 비대칭 사다리꼴 휜의 최적화)

  • Kang, Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.579-588
    • /
    • 2003
  • Optimum fin effectiveness of geometrically and thermally asymmetric trapezoidal fins is represented as a function of the ratio of the fin bottom to top Biot numbers, the ratio of the fin tip to top Biot numbers and fin shape factor. Optimum fin effectiveness is taken as 98% of the maximum fin effectiveness by comparing the increasing rate of fin effectiveness with that of dimensionless fin length. For this analysis, two dimensional separation of variables method is used. Also, the value of the slope of upper surface of the fin and fin efficiency corresponding to optimum effectiveness are presented.

A Study on the Lubrication Characteristics of Spool Valve with Spiral Groove (스파이럴 그루브가 가공된 스풀밸브의 윤활 특성 연구)

  • Hong, Sung-Ho;Son, Sang-Ik;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.303-314
    • /
    • 2012
  • In this research, spool valves with spiral grooves are suggested and their lubrication characteristics are investigated by numerical analysis. The three-dimensional flow field is obtained by solving the Navier-Stokes equations in dimensionless form, so that the performance variables such as lateral force, friction force and volume flow rate are determined. Also, the lubrication characteristics of spool valves with spiral grooves are compared with those with typical grooves under variable working conditions. It is shown that spool valves with spiral grooves can get better performance in aspect of mitigation of uneven pressure distribution surrounding spool. Moreover, it is found that the minimum distance between spool edges and grooves, the type of spiral groove, and the groove angle have noticeable effect on the lubrication characteristics.