• 제목/요약/키워드: Dimensionality Reduction

검색결과 204건 처리시간 0.025초

Dimensionality reduction for pattern recognition based on difference of distribution among classes

  • Nishimura, Masaomi;Hiraoka, Kazuyuki;Mishima, Taketoshi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1670-1673
    • /
    • 2002
  • For pattern recognition on high-dimensional data, such as images, the dimensionality reduction as a preprocessing is effective. By dimensionality reduction, we can (1) reduce storage capacity or amount of calculation, and (2) avoid "the curse of dimensionality" and improve classification performance. Popular tools for dimensionality reduction are Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Independent Component Analysis (ICA) recently. Among them, only LDA takes the class labels into consideration. Nevertheless, it, has been reported that, the classification performance with ICA is better than that with LDA because LDA has restriction on the number of dimensions after reduction. To overcome this dilemma, we propose a new dimensionality reduction technique based on an information theoretic measure for difference of distribution. It takes the class labels into consideration and still it does not, have restriction on number of dimensions after reduction. Improvement of classification performance has been confirmed experimentally.

  • PDF

Data Visualization using Linear and Non-linear Dimensionality Reduction Methods

  • Kim, Junsuk;Youn, Joosang
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권12호
    • /
    • pp.21-26
    • /
    • 2018
  • As the large amount of data can be efficiently stored, the methods extracting meaningful features from big data has become important. Especially, the techniques of converting high- to low-dimensional data are crucial for the 'Data visualization'. In this study, principal component analysis (PCA; linear dimensionality reduction technique) and Isomap (non-linear dimensionality reduction technique) are introduced and applied to neural big data obtained by the functional magnetic resonance imaging (fMRI). First, we investigate how much the physical properties of stimuli are maintained after the dimensionality reduction processes. We moreover compared the amount of residual variance to quantitatively compare the amount of information that was not explained. As result, the dimensionality reduction using Isomap contains more information than the principal component analysis. Our results demonstrate that it is necessary to consider not only linear but also nonlinear characteristics in the big data analysis.

Novel Intent based Dimension Reduction and Visual Features Semi-Supervised Learning for Automatic Visual Media Retrieval

  • kunisetti, Subramanyam;Ravichandran, Suban
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.230-240
    • /
    • 2022
  • Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.

유전알고리즘과 러프집합을 이용한 계층적 식별 규칙을 갖는 가스 식별 시스템의 설계 (Design of Gas Identification System with Hierarchically Identifiable Rule base using GAS and Rough Sets)

  • 조해파;방영근;이철희
    • 산업기술연구
    • /
    • 제31권B호
    • /
    • pp.37-43
    • /
    • 2011
  • In pattern analysis, dimensionality reduction and reasonable identification rule generation are very important parts. This paper performed effectively the dimensionality reduction by grouping the sensors of which the measured patterns are similar each other, where genetic algorithms were used for combination optimization. To identify the gas type, this paper constructed the hierarchically identifiable rule base with two frames by using rough set theory. The first frame is to accept measurement characteristics of each sensor and the other one is to reflect the identification patterns of each group. Thus, the proposed methods was able to accomplish effectively dimensionality reduction as well as accurate gas identification. In simulation, this paper demonstrated the effectiveness of the proposed methods by identifying five types of gases.

  • PDF

A Novel Speech/Music Discrimination Using Feature Dimensionality Reduction

  • Keum, Ji-Soo;Lee, Hyon-Soo;Hagiwara, Masafumi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권1호
    • /
    • pp.7-11
    • /
    • 2010
  • In this paper, we propose an improved speech/music discrimination method based on a feature combination and dimensionality reduction approach. To improve discrimination ability, we use a feature based on spectral duration analysis and employ the hierarchical dimensionality reduction (HDR) method to reduce the effect of correlated features. Through various kinds of experiments on speech and music, it is shown that the proposed method showed high discrimination results when compared with conventional methods.

Dimensionality Reduction of RNA-Seq Data

  • Al-Turaiki, Isra
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.31-36
    • /
    • 2021
  • RNA sequencing (RNA-Seq) is a technology that facilitates transcriptome analysis using next-generation sequencing (NSG) tools. Information on the quantity and sequences of RNA is vital to relate our genomes to functional protein expression. RNA-Seq data are characterized as being high-dimensional in that the number of variables (i.e., transcripts) far exceeds the number of observations (e.g., experiments). Given the wide range of dimensionality reduction techniques, it is not clear which is best for RNA-Seq data analysis. In this paper, we study the effect of three dimensionality reduction techniques to improve the classification of the RNA-Seq dataset. In particular, we use PCA, SVD, and SOM to obtain a reduced feature space. We built nine classification models for a cancer dataset and compared their performance. Our experimental results indicate that better classification performance is obtained with PCA and SOM. Overall, the combinations PCA+KNN, SOM+RF, and SOM+KNN produce preferred results.

Boosting Multifactor Dimensionality Reduction Using Pre-evaluation

  • Hong, Yingfu;Lee, Sangbum;Oh, Sejong
    • ETRI Journal
    • /
    • 제38권1호
    • /
    • pp.206-215
    • /
    • 2016
  • The detection of gene-gene interactions during genetic studies of common human diseases is important, and the technique of multifactor dimensionality reduction (MDR) has been widely applied to this end. However, this technique is not free from the "curse of dimensionality" -that is, it works well for two- or three-way interactions but requires a long execution time and extensive computing resources to detect, for example, a 10-way interaction. Here, we propose a boosting method to reduce MDR execution time. With the use of pre-evaluation measurements, gene sets with low levels of interaction can be removed prior to the application of MDR. Thus, the problem space is decreased and considerable time can be saved in the execution of MDR.

음성인식에서 주 성분 분석에 의한 차원 저감 (Dimensionality Reduction in Speech Recognition by Principal Component Analysis)

  • 이창영
    • 한국전자통신학회논문지
    • /
    • 제8권9호
    • /
    • pp.1299-1305
    • /
    • 2013
  • 이 논문에서 우리는 MFCC 특징벡터의 차원 저감을 통해 음성 인식에서의 계산량을 줄이는 방법을 조사한다. 특징벡터의 특성분해는 벡터의 성분을 분산의 크기에 따라 배치되도록 선형 변환 시켜준다. 첫 번째 성분은 가장 큰 분산을 가져서 패턴 분류에서 가장 중요한 역할을 한다. 따라서, 분산이 작은 성분들을 제외시키는 차원 저감을 통하여, 계산량을 줄이면서 동시에 음성 인식 성능을 저하시키지 않는 방법을 생각할 수 있다. 실험 결과, MFCC 특징벡터의 성분을 절반 정도로 줄여도 음성인식 오류율에 큰 악영향이 없음이 확인되었다.

고차원 공간에서 효과적인 차원 축소 기법 (An Effective Method for Dimensionality Reduction in High-Dimensional Space)

  • 정승도;김상욱;최병욱
    • 전자공학회논문지CI
    • /
    • 제43권4호
    • /
    • pp.88-102
    • /
    • 2006
  • 멀티미디어 정보 검색에서 멀티미디어 데이터는 고차원 공간상의 벡터로 표현된다. 이러한 특정 벡터를 효율적으로 검색하기 위하여 다양한 색인 기법이 제안되어 왔다. 그러나 특정 벡터의 차원이 증가하면서 색인 기법의 효율성이 급격히 떨어지는 차원의 저주 문제가 발생한다. 차원의 저주 문제를 해결하기 위하여 색인하기 이전에 원 특정 벡터를 저차원 공간상의 벡터로 사상하는 차원 축소 기법이 제안된 바 있다. 본 연구에서는 벡터의 놈과 각도 성분을 이용하여 유클리드 거리를 근사하는 함수를 기반으로 하는 새로운 차원 축소 기법을 제안한다. 먼저, 유클리드 거리 근사를 위하여 추정된 각도의 오차의 발생 원인을 분석하고 이 오차를 줄이기 위한 기본 방향을 제시한다. 또한, 고차원 특정 벡터를 다수의 특징 서브 벡터들의 집합으로 분리하고 각 특징 서브 벡터로부터 놈과 각도 성분을 근사하여 차원을 축소하는 새로운 기법을 제안한다. 각도 성분을 정확하게 근사하기 위해서는 올바른 기준 벡터의 설정이 필수적이다. 본 연구에서는 최적 기준 벡터의 조건을 제시하고, Levenberg-Marquardt 알고리즘을 이용하여 기준 벡터를 선정하는 방법을 제안한다. 또한, 축소된 저차원 공간상의 벡터틀을 위한 새로운 거리 함수를 정의하고, 이 거리 함수가 유클리드 거리 함수의 하한 함수가 됨을 이론적으로 증명한다. 이는 제안된 기법이 착오 기각의 발생을 허용하지 않으면서 효과적으로 차원을 줄일 수 있음을 의미하는 것이다. 끝으로, 다양한 실험에 의한 성능 평가를 통하여 제안하는 방법의 우수성을 규명한다.

Performance evaluation of principal component analysis for clustering problems

  • Kim, Jae-Hwan;Yang, Tae-Min;Kim, Jung-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권8호
    • /
    • pp.726-732
    • /
    • 2016
  • Clustering analysis is widely used in data mining to classify data into categories on the basis of their similarity. Through the decades, many clustering techniques have been developed, including hierarchical and non-hierarchical algorithms. In gene profiling problems, because of the large number of genes and the complexity of biological networks, dimensionality reduction techniques are critical exploratory tools for clustering analysis of gene expression data. Recently, clustering analysis of applying dimensionality reduction techniques was also proposed. PCA (principal component analysis) is a popular methd of dimensionality reduction techniques for clustering problems. However, previous studies analyzed the performance of PCA for only full data sets. In this paper, to specifically and robustly evaluate the performance of PCA for clustering analysis, we exploit an improved FCBF (fast correlation-based filter) of feature selection methods for supervised clustering data sets, and employ two well-known clustering algorithms: k-means and k-medoids. Computational results from supervised data sets show that the performance of PCA is very poor for large-scale features.