• Title/Summary/Keyword: Dimensionality Reduction

Search Result 202, Processing Time 0.032 seconds

Multifactor Dimensionality Reduction (MDR) Analysis to Detect Single Nucleotide Polymorphisms Associated with a Carcass Trait in a Hanwoo Population

  • Lee, Jea-Young;Kwon, Jae-Chul;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.784-788
    • /
    • 2008
  • Studies to detect genes responsible for economic traits in farm animals have been performed using parametric linear models. A non-parametric, model-free approach using the 'expanded multifactor-dimensionality reduction (MDR) method' considering high dimensionalities of interaction effects between multiple single nucleotide polymorphisms (SNPs), was applied to identify interaction effects of SNPs responsible for carcass traits in a Hanwoo beef cattle population. Data were obtained from the Hanwoo Improvement Center, National Agricultural Cooperation Federation, Korea, and comprised 299 steers from 16 paternal half-sib proven sires that were delivered in Namwon or Daegwanryong livestock testing stations between spring of 2002 and fall of 2003. For each steer at approximately 722 days of age, the Longssimus dorsi muscle area (LMA) was measured after slaughter. Three functional SNPs (19_1, 18_4, 28_2) near the microsatellite marker ILSTS035 on BTA6, around which the QTL for meat quality were previously detected, were assessed. Application of the expanded MDR method revealed the best model with an interaction effect between the SNPs 19_1 and 28_2, while only one main effect of SNP19_1 was statistically significant for LMA (p<0.01) under a general linear mixed model. Our results suggest that the expanded MDR method better identifies interaction effects between multiple genes that are related to polygenic traits, and that the method is an alternative to the current model choices to find associations of multiple functional SNPs and/or their interaction effects with economic traits in livestock populations.

Identification of Stearoyl-CoA Desaturase (SCD) Gene Interactions in Korean Native Cattle Based on the Multifactor-dimensionality Reduction Method

  • Oh, Dong-Yep;Jin, Me-Hyun;Lee, Yoon-Seok;Ha, Jae-Jung;Kim, Byung-Ki;Yeo, Jung-Sou;Lee, Jea-Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.9
    • /
    • pp.1218-1228
    • /
    • 2013
  • Fat quality is determined by the composition of fatty acids. Genetic relationships between this composition and single nucleotide polymorphisms (SNPs) in the stearoyl-CoA desaturase1 (SCD1) gene were examined using 513 Korean native cattle. Single and epistatic effects of 7 SNP genetic variations were investigated, and the multifactor dimensionality reduction (MDR) method was used to investigate gene interactions in terms of oleic acid (C18:1), mono-unsaturated fatty acids (MUFAs) and marbling score (MS). The g.6850+77 A>G and g.14047 C>T SNP interactions were identified as the statistically optimal combination (C18:1, MUFAs and MS permutation p-values were 0.000, 0.000 and 0.001 respectively) of two-way gene interactions. The interaction effects of g.6850+77 A>G, g.10213 T>C and g.14047 C>T reflected the highest training-balanced accuracy (63.76%, 64.70% and 61.85% respectively) and was better than the individual effects for C18:1, MUFAs and MS. In addition, the superior genotype groups were AATTCC, AGTTCC, GGTCCC, AGTCCT, GGCCCT and AGCCTT. These results suggest that the selected SNP combination of the SCD1 gene and superior genotype groups can provide useful inferences for the improvement of the fatty acid composition in Korean native cattle.

Important SNPs Identification from the Economic Traits for the High Quality Korean Cattle (고품질 한우를 위한 여러 경제형질에서의 주요 SNP 규명)

  • Lee, Jea-Young;Kim, Dong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • In order to make the high quality Korean cattle, it has been identified the gene markers which influence to various economic traits. To identify statistically significances among SNP markers, Lee et. al. (2008b) identified SNP(19_1)$^*$SNP(28_2) marker was an important marker in LMA(longissimus muscle dorsi area). In addition, CWT(carcass cold weight) and ADG(average daily gain) are applied for expanded multifactor dimensionality reduction (expanded MDR) method from the comprehensive economic traits. The results showed that SNP(19_1)$^*$SNP(28_2) interaction marker was good and a very meaningful for economic traits.

The study on risk factors for diagnosis of metabolic syndrome and odds ratio using multifactor dimensionality reduction method (다중인자 차원 축소 방법에 의한 대사증후군의 위험도 분석과 오즈비)

  • Jin, Mi-Hyun;Lee, Jea-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.867-876
    • /
    • 2013
  • Metabolic syndrome has been known as a major factor of cardiovascular disease. Several metabolic disorders, particularly chronic disease is complex, and from individuals that appear in our country, the prevalence of the metabolic syndrome is increasing gradually. Therefore, this study, using a multi-factor dimensionality reduction method, checks the major single risk factor of metabolic syndrome and suggests a new diagnosis results of metabolic syndrome. Data of 3990 adults who responded to all the questionnaires of health interview are used from the database of the 5th Korea national health and nutrition examination survey conducted in 2010. As the result, the most dangerous single risk factor for metabolic syndrome was waist circumference and the most dangerous combination factors were waist circumference, triglyceride, and hypertension. This is the result of a new diagnosis of the metabolic syndrome. Especially, waist circumference, low HDL-cholesterol and hypertension were the most dangerous combination for male. In particular, the combination of waist circumference, triglyceride and diabetes was dangerous for obese people.

A Novel Approach of Feature Extraction for Analog Circuit Fault Diagnosis Based on WPD-LLE-CSA

  • Wang, Yuehai;Ma, Yuying;Cui, Shiming;Yan, Yongzheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2485-2492
    • /
    • 2018
  • The rapid development of large-scale integrated circuits has brought great challenges to the circuit testing and diagnosis, and due to the lack of exact fault models, inaccurate analog components tolerance, and some nonlinear factors, the analog circuit fault diagnosis is still regarded as an extremely difficult problem. To cope with the problem that it's difficult to extract fault features effectively from masses of original data of the nonlinear continuous analog circuit output signal, a novel approach of feature extraction and dimension reduction for analog circuit fault diagnosis based on wavelet packet decomposition, local linear embedding algorithm, and clone selection algorithm (WPD-LLE-CSA) is proposed. The proposed method can identify faulty components in complicated analog circuits with a high accuracy above 99%. Compared with the existing feature extraction methods, the proposed method can significantly reduce the quantity of features with less time spent under the premise of maintaining a high level of diagnosing rate, and also the ratio of dimensionality reduction was discussed. Several groups of experiments are conducted to demonstrate the efficiency of the proposed method.

Major gene interaction identification in Hanwoo by adjusted environmental effects (환경적인 요인을 보정한 한우의 우수 유전자 조합 선별)

  • Lee, Jea-Young;Jin, Mi-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.3
    • /
    • pp.467-474
    • /
    • 2012
  • Human diseases and livestock economic traits are not typically the result of variation of a single genetic locus, but are rather the result of interplay between interactions among multiple genes and a variety of environmental exposures. We have used linear regression model for adjusted environmental effects and multifactor dimensionality reduction (MDR) method to identify gene-gene interaction effect of statistical model in general. Of course, we use 5 SNPs (single uncleotide polymorphism) which were studied recently by Oh et al. (2011). We apply the MDR (multifactor demensionality reduction) method on the identify major interaction effects of single nucleotide polymorphisms responsible for economic traits in a Korean cattle population.

On Combining Genetic Algorithm (GA) and Wavelet for High Dimensional Data Reduction

  • Liu, Zhengjun;Wang, Changyao;Zhang, Jixian;Yan, Qin
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1272-1274
    • /
    • 2003
  • In this paper, we present a new algorithm for high dimensional data reduction based on wavelet decomposition and Genetic Algorithm (GA). Comparative results show the superiority of our algorithm for dimensionality reduction and accuracy improvement.

  • PDF

Nearest-Neighbor Collaborative Filtering Using Dimensionality Reduction by Non-negative Matrix Factorization (비부정 행렬 인수분해 차원 감소를 이용한 최근 인접 협력적 여과)

  • Ko, Su-Jeong
    • The KIPS Transactions:PartB
    • /
    • v.13B no.6 s.109
    • /
    • pp.625-632
    • /
    • 2006
  • Collaborative filtering is a technology that aims at teaming predictive models of user preferences. Collaborative filtering systems have succeeded in Ecommerce market but they have shortcomings of high dimensionality and sparsity. In this paper we propose the nearest neighbor collaborative filtering method using non-negative matrix factorization(NNMF). We replace the missing values in the user-item matrix by using the user variance coefficient method as preprocessing for matrix decomposition and apply non-negative factorization to the matrix. The positive decomposition method using the non-negative decomposition represents users as semantic vectors and classifies the users into groups based on semantic relations. We compute the similarity between users by using vector similarity and selects the nearest neighbors based on the similarity. We predict the missing values of items that didn't rate by a new user based on the values that the nearest neighbors rated items.

A Comparative Experiment on Dimensional Reduction Methods Applicable for Dissimilarity-Based Classifications (비유사도-기반 분류를 위한 차원 축소방법의 비교 실험)

  • Kim, Sang-Woon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.59-66
    • /
    • 2016
  • This paper presents an empirical evaluation on dimensionality reduction strategies by which dissimilarity-based classifications (DBC) can be implemented efficiently. In DBC, classification is not based on feature measurements of individual objects (a set of attributes), but rather on a suitable dissimilarity measure among the individual objects (pair-wise object comparisons). One problem of DBC is the high dimensionality of the dissimilarity space when a lots of objects are treated. To address this issue, two kinds of solutions have been proposed in the literature: prototype selection (PS)-based methods and dimension reduction (DR)-based methods. In this paper, instead of utilizing the PS-based or DR-based methods, a way of performing DBC in Eigen spaces (ES) is considered and empirically compared. In ES-based DBC, classifications are performed as follows: first, a set of principal eigenvectors is extracted from the training data set using a principal component analysis; second, an Eigen space is expanded using a subset of the extracted and selected Eigen vectors; third, after measuring distances among the projected objects in the Eigen space using $l_p$-norms as the dissimilarity, classification is performed. The experimental results, which are obtained using the nearest neighbor rule with artificial and real-life benchmark data sets, demonstrate that when the dimensionality of the Eigen spaces has been selected appropriately, compared to the PS-based and DR-based methods, the performance of the ES-based DBC can be improved in terms of the classification accuracy.