• Title/Summary/Keyword: Dimensionality Curse

Search Result 58, Processing Time 0.03 seconds

Energy-Saving Oriented On/Off Strategies in Heterogeneous Networks : an Asynchronous Approach with Dynamic Traffic Variations

  • Tang, Lun;Wang, Weili;Chen, Qianbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5449-5464
    • /
    • 2018
  • Recent works have validated the possibility of reducing the energy consumption in wireless heterogeneous networks, achieved by switching on/off some base stations (BSs) dynamically. In this paper, to realize energy conservation, the discrete time Markov Decision Process (DTMDP) is developed to match up the BS switching operations with the traffic load variations. Then, an asynchronous decision-making algorithm, which is based on the Bellman equation and the on/off priorities of the BSs, is firstly put forward and proved to be optimal in this paper. Through reducing the state and action space during one decision, the proposed asynchronous algorithm can avoid the "curse of dimensionality" occurred in DTMDP frequently. Finally, numerical simulations are conducted to validate the effectiveness and advantages of the proposed asynchronous on/off strategies.

Comprehensive review on Clustering Techniques and its application on High Dimensional Data

  • Alam, Afroj;Muqeem, Mohd;Ahmad, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.237-244
    • /
    • 2021
  • Clustering is a most powerful un-supervised machine learning techniques for division of instances into homogenous group, which is called cluster. This Clustering is mainly used for generating a good quality of cluster through which we can discover hidden patterns and knowledge from the large datasets. It has huge application in different field like in medicine field, healthcare, gene-expression, image processing, agriculture, fraud detection, profitability analysis etc. The goal of this paper is to explore both hierarchical as well as partitioning clustering and understanding their problem with various approaches for their solution. Among different clustering K-means is better than other clustering due to its linear time complexity. Further this paper also focused on data mining that dealing with high-dimensional datasets with their problems and their existing approaches for their relevancy

Control of pH Neutralization Process using Simulation Based Dynamic Programming in Simulation and Experiment (ICCAS 2004)

  • Kim, Dong-Kyu;Lee, Kwang-Soon;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.620-626
    • /
    • 2004
  • For general nonlinear processes, it is difficult to control with a linear model-based control method and nonlinear controls are considered. Among the numerous approaches suggested, the most rigorous approach is to use dynamic optimization. Many general engineering problems like control, scheduling, planning etc. are expressed by functional optimization problem and most of them can be changed into dynamic programming (DP) problems. However the DP problems are used in just few cases because as the size of the problem grows, the dynamic programming approach is suffered from the burden of calculation which is called as 'curse of dimensionality'. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach is proposed by Bertsekas and Tsitsiklis (1996). To get the solution of seriously nonlinear process control, the interest in NDP approach is enlarged and NDP algorithm is applied to diverse areas such as retailing, finance, inventory management, communication networks, etc. and it has been extended to chemical engineering parts. In the NDP approach, we select the optimal control input policy to minimize the value of cost which is calculated by the sum of current stage cost and future stages cost starting from the next state. The cost value is related with a weight square sum of error and input movement. During the calculation of optimal input policy, if the approximate cost function by using simulation data is utilized with Bellman iteration, the burden of calculation can be relieved and the curse of dimensionality problem of DP can be overcome. It is very important issue how to construct the cost-to-go function which has a good approximate performance. The neural network is one of the eager learning methods and it works as a global approximator to cost-to-go function. In this algorithm, the training of neural network is important and difficult part, and it gives significant effect on the performance of control. To avoid the difficulty in neural network training, the lazy learning method like k-nearest neighbor method can be exploited. The training is unnecessary for this method but requires more computation time and greater data storage. The pH neutralization process has long been taken as a representative benchmark problem of nonlin ar chemical process control due to its nonlinearity and time-varying nature. In this study, the NDP algorithm was applied to pH neutralization process. At first, the pH neutralization process control to use NDP algorithm was performed through simulations with various approximators. The global and local approximators are used for NDP calculation. After that, the verification of NDP in real system was made by pH neutralization experiment. The control results by NDP algorithm was compared with those by the PI controller which is traditionally used, in both simulations and experiments. From the comparison of results, the control by NDP algorithm showed faster and better control performance than PI controller. In addition to that, the control by NDP algorithm showed the good results when it applied to the cases with disturbances and multiple set point changes.

  • PDF

Design and Performance Analysis of a Parallel Cell-Based Filtering Scheme using Horizontally-Partitioned Technique (수평 분할 방식을 이용한 병렬 셀-기반 필터링 기법의 설계 및 성능 평가)

  • Chang, Jae-Woo;Kim, Young-Chang
    • The KIPS Transactions:PartD
    • /
    • v.10D no.3
    • /
    • pp.459-470
    • /
    • 2003
  • It is required to research on high-dimensional index structures for efficiently retrieving high-dimensional data because an attribute vector in data warehousing and a feature vector in multimedia database have a characteristic of high-dimensional data. For this, many high-dimensional index structures have been proposed, but they have so called ‘dimensional curse’ problem that retrieval performance is extremely decreased as the dimensionality is increased. To solve the problem, the cell-based filtering (CBF) scheme has been proposed. But the CBF scheme show a linear decreasing on performance as the dimensionality. To cope with the problem, it is necessary to make use of parallel processing techniques. In this paper, we propose a parallel CBF scheme which uses a horizontally-partitioned technique as declustering. In order to maximize the retrieval performance of the proposed parallel CBF scheme, we construct our parallel CBF scheme under a SN (Shared Nothing) cluster architecture. In addition, we present a data insertion algorithm, a rage query processing one, and a k-NN query processing one which are suitable for the SN cluster architecture. Finally, we show that our parallel CBF scheme achieves better retrieval performance in proportion to the number of servers in the SN cluster architecture, compared with the conventional CBF scheme.

Multi-objective Genetic Algorithm for Variable Selection in Linear Regression Model and Application (선형회귀모델의 변수선택을 위한 다중목적 유전 알고리즘과 응용)

  • Kim, Dong-Il;Park, Cheong-Sool;Baek, Jun-Geol;Kim, Sung-Shick
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.137-148
    • /
    • 2009
  • The purpose of this study is to implement variable selection algorithm which helps construct a reliable linear regression model. If we use all candidate variables to construct a linear regression model, the significance of the model will be decreased and it will cause 'Curse of Dimensionality'. And if the number of data is less than the number of variables (dimension), we cannot construct the regression model. Due to these problems, we consider the variable selection problem as a combinatorial optimization problem, and apply GA (Genetic Algorithm) to the problem. Typical measures of estimating statistical significance are $R^2$, F-value of regression model, t-value of regression coefficients, and standard error of estimates. We design GA to solve multi-objective functions, because statistical significance of model is not to be estimated by a single measure. We perform experiments using simulation data, designed to consider various kinds of situations. As a result, it shows better performance than LARS (Least Angle Regression) which is an algorithm to solve variable selection problems. We modify algorithm to solve portfolio selection problem which construct portfolio by selecting stocks. We conclude that the algorithm is able to solve real problems.

Adverse Effects on EEGs and Bio-Signals Coupling on Improving Machine Learning-Based Classification Performances

  • SuJin Bak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.133-153
    • /
    • 2023
  • In this paper, we propose a novel approach to investigating brain-signal measurement technology using Electroencephalography (EEG). Traditionally, researchers have combined EEG signals with bio-signals (BSs) to enhance the classification performance of emotional states. Our objective was to explore the synergistic effects of coupling EEG and BSs, and determine whether the combination of EEG+BS improves the classification accuracy of emotional states compared to using EEG alone or combining EEG with pseudo-random signals (PS) generated arbitrarily by random generators. Employing four feature extraction methods, we examined four combinations: EEG alone, EG+BS, EEG+BS+PS, and EEG+PS, utilizing data from two widely-used open datasets. Emotional states (task versus rest states) were classified using Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) classifiers. Our results revealed that when using the highest accuracy SVM-FFT, the average error rates of EEG+BS were 4.7% and 6.5% higher than those of EEG+PS and EEG alone, respectively. We also conducted a thorough analysis of EEG+BS by combining numerous PSs. The error rate of EEG+BS+PS displayed a V-shaped curve, initially decreasing due to the deep double descent phenomenon, followed by an increase attributed to the curse of dimensionality. Consequently, our findings suggest that the combination of EEG+BS may not always yield promising classification performance.

GC-Tree: A Hierarchical Index Structure for Image Databases (GC-트리 : 이미지 데이타베이스를 위한 계층 색인 구조)

  • 차광호
    • Journal of KIISE:Databases
    • /
    • v.31 no.1
    • /
    • pp.13-22
    • /
    • 2004
  • With the proliferation of multimedia data, there is an increasing need to support the indexing and retrieval of high-dimensional image data. Although there have been many efforts, the performance of existing multidimensional indexing methods is not satisfactory in high dimensions. Thus the dimensionality reduction and the approximate solution methods were tried to deal with the so-called dimensionality curse. But these methods are inevitably accompanied by the loss of precision of query results. Therefore, recently, the vector approximation-based methods such as the VA- file and the LPC-file were developed to preserve the precision of query results. However, the performance of the vector approximation-based methods depend largely on the size of the approximation file and they lose the advantages of the multidimensional indexing methods that prune much search space. In this paper, we propose a new index structure called the GC-tree for efficient similarity search in image databases. The GC-tree is based on a special subspace partitioning strategy which is optimized for clustered high-dimensional images. It adaptively partitions the data space based on a density function and dynamically constructs an index structure. The resultant index structure adapts well to the strongly clustered distribution of high-dimensional images.

Polyclass in Data Mining (데이터 마이닝에서의 폴리클라스)

  • 구자용;박헌진;최대우
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.489-503
    • /
    • 2000
  • Data mining means data analysis and model selection using various types of data in order to explore useful information and knowledge for making decisions. Examples of data mining include scoring for credit analysis of a new customer and scoring for churn management, where the customers with high scores are given special attention. In this paper, scoring is interpreted as a modeling process of the conditional probability and polyclass scoring method is described. German credit data, a PC communication company data and a mobile communication company data are used to compare the performance of polyclass scoring method with that of the scoring method based on a tree model.

  • PDF

A Study on the Application of Genetic Algorithms and Fuzzy System to GAS Identification System (가스 식별 시스템 설계를 위한 유전알고리즘과 퍼지시스템 적용에 관한 연구)

  • Bang, Young-Keun;Haibo, Zhao;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.45-50
    • /
    • 2011
  • Recently, machine olfactory systems that have been proposed as an artificial substitute of the human olfactory system are being studied by many researchers because they can scent dangerous gases and identify the type of gases in contamination areas instead of the human. In this paper, we present an effective design method for the gas identification system. The design method adopted the sequential combination between genetic algorithms and TSK fuzzy logic system. First, the proposed method allowed the designed gas identification system effectively performing the pattern analysis because it was able to avoid the curse of dimensionality caused by use of a large number of sensors. Secondly, the method led the gas identification system to good performance because it was able to deal with drift characteristics of the sensor data by using description ability of the fuzzy system for nonlinear data. In simulation, we demonstrated the effectiveness of the designed gas identification system by using the simulation results of five types of gases.

  • PDF

Indexing and Matching Scheme for Content-based Image Retrieval based on Extendible Hash (효과적인 이미지 검색을 위한 연장 해쉬(Extendible hash) 기반 인덱싱 및 검색 기법)

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.339-345
    • /
    • 2010
  • So far, many researches have been done to index high-dimensional feature values for fast content-based image retrieval. Still, many existing indexing schemes are suffering from performance degradation due to the curse of dimensionality problem. As an alternative, heuristic algorithms have been proposed to calculate the result with 'high probability' at the cost of accuracy. In this paper, we propose a new extendible hash-based indexing scheme for high-dimensional feature values. Our indexing scheme provides several advantages compared to the traditional high-dimensional index structures in terms of search performance and accuracy preservation. Through extensive experiments, we show that our proposed indexing scheme achieves outstanding performance.