• Title/Summary/Keyword: Dimensional Verification

Search Result 510, Processing Time 0.02 seconds

Two-Dimensional Joint Bayesian Method for Face Verification

  • Han, Sunghyu;Lee, Il-Yong;Ahn, Jung-Ho
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.381-391
    • /
    • 2016
  • The Joint Bayesian (JB) method has been used in most state-of-the-art methods for face verification. However, since the publication of the original JB method in 2012, no improved verification method has been proposed. A lot of studies on face verification have been focused on extracting good features to improve the performance in the challenging Labeled Faces in the Wild (LFW) database. In this paper, we propose an improved version of the JB method, called the two-dimensional Joint Bayesian (2D-JB) method. It is very simple but effective in both the training and test phases. We separated two symmetric terms from the three terms of the JB log likelihood ratio function. Using the two terms as a two-dimensional vector, we learned a decision line to classify same and not-same cases. Our experimental results show that the proposed 2D-JB method significantly outperforms the original JB method by more than 1% in the LFW database.

An Internet-based Dimensional Verification System for Reverse Engineering (역설계를 위한 인터넷 기반의 치수검증 시스템)

  • Song, In-Ho;Kim, Kyung-Don;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1409-1417
    • /
    • 2003
  • In the 21st century, the concept of remote design and manufacture is strongly required in manufacturing processes to reduce cost and time-to-market. The objective of this paper is the development of an internet-based dimensional verification system for reverse engineering. An inspection client can register measurement data at the developed web server. Collaborators related to the development of a new product can confirm geometrical form from measurement data, check dimensional information and mark up the important parts, as well as make a statement of their views through the Internet. The developed system is realized through the ActiveX-Server architecture. Functions of the dimensional verification module are constructed as ActiveX by using the visual C++ and OpenGL. The usefulness of the developed system is confirmed through a case study.

Fast Force Algorithm of End Milling Processes and Its Application to the NC Verification System (엔드밀링의 효과적인 절삭력 모델과 NC 검증시스템으로의 응용)

  • 김찬봉;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1555-1562
    • /
    • 1995
  • This study represents the non-dimensional cutting force model. With the non-dimensional cutting force model it is possible to estimate efficiently the maximum cutting force during one revolution of cutter. Using the non-dimensional cutting force model, the feed rate and spindle speed are adjusted so as to satisfy the maximum cutting force and maximum machining error. To verify the accuracy and efficiency of the non-dimensional cutting force model, a series of experiments were conducted, and experimental results proved and verified the non-dimensional cutting force model. The NC toolpath verification system developed in this paper uses the non-dimensional cutting force model, so that it is effective for calculating the cutting force and adjusting the cutting conditions.

Web-based Design and Dimension Verification System Using STEP Files (STEP 파일을 이용한 웹기반 설계 및 치수 검증 시스템)

  • Song, In-Ho;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.961-969
    • /
    • 2004
  • Most manufacturing companies are trying to develop a competitive product by increasing the quality, shortening time to market and reducing the cost of a product. Collaborators related to the development of a new product want to confirm geometric forms and dimensions during the design process, as well as to verify dimensional errors of a product during the fabrication process. Objective of this paper is the development of a collaborative design and dimension verification system on the Internet. STEP files obtained from the design process are used for the design and dimension verification. Functions of the design and dimension verification modules are constructed over the ActiveX control using the visual C/sup ++/ and OpenGL. By using mark up functions over the Internet, collaborators check geometries, interferences, dimensional errors, human factors and form errors, as well as share their design ideas and opinions with XML rapidly and remotely. The usefulness of the developed system is confirmed through case studies.

Design of Lightweight CAD Files with Dimensional Verification Capability for Web-Based Collaboration (웹기반 협업을 위한 치수검증이 가능한 경량캐드파일 설계)

  • Song In-Ho;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.488-495
    • /
    • 2006
  • The demand for the use of 3D CAD data over the Internet environment has been increased. However, transmission of 3D CAD data has delayed the communication effectiveness because of the CAD data size. Lightweight CAD file design methodology is required for rapid transmission in the distributed environment. In this paper, to derive lightweight CAD files from commercial CAD systems, a file translation system producing a native file is constructed first by using the InterOp and API of the ACIS kernel. Using the B-rep model and mesh data extracted from the native file, the lightweight CAD file with topological information is constructed as a binary file. Since the lightweight CAD file retains topological information, it is applied to the dimensional verification, digital mock-ups and visualization of CAD files. Effectiveness of the proposed lightweight CAD file is confirmed through various case studies.

Dosimetric Characteristic of Digital CCD Video Camera for Radiation Therapy

  • Young Woo. Vahc;Kim, Tae Hong.;Won Kyun. Chung;Ohyun Kwon;Park, Kyung Ran.;Lee, Yong Ha.
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.147-155
    • /
    • 2000
  • Patient dose verification is one of the most important parts in quality assurance of the treatment delivery for radiation therapy. The dose distributions may be meaningfully improved by modulating two dimensional intensity profile of the individual high energy radiation beams In this study, a new method is presented for the pre-treatment dosimetric verification of these two dimensional distributions of beam intensity by means of a charge coupled device video camera-based fluoroscopic device (henceforth called as CCD-VCFD) as a radiation detecter with a custom-made software for dose calculation from fluorescence signals. This system of dosimeter (CCD-VCFD) could reproduce three dimensional (3D) relative dose distribution from the digitized fluoroscopic signals for small (1.0$\times$1.0 cm$^2$ square, ø 1.0 cm circular ) and large (30$\times$30cm$^2$) field sizes used in intensity modulated radiation therapy (IMRT). For the small beam sizes of photon and electron, the calculations are performed In absolute beam fluence profiles which are usually used for calculation of the patient dose distribution. The good linearity with respect to the absorbed dose, independence of dose rate, and three dimensional profiles of small beams using the CCD-VCFD were demonstrated by relative measurements in high energy Photon (15 MV) and electron (9 MeV) beams. These measurements of beam profiles with CCD-VCFD show good agreement with those with other dosimeters such as utramicro-cylindrical (UC) ionization chamber and radiographic film. The study of the radiation dosimetric technique using CCD-VCFD may provide a fast and accurate pre-treatment verification tool for the small beam used in stereotactic radiosurgery (SRS) and can be used for verification of dose distribution from dynamic multi-leaf collimation system (DMLC).

  • PDF

Online Signature Verification Method using General Handwriting Data (일반 필기 데이터를 이용한 온라인 서명 검증 기법)

  • Heo, Gyeongyong;Kim, Seong-Hoon;Woo, Young Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2298-2304
    • /
    • 2017
  • Online signature verification is one of the simple and efficient method of identity verification and has less resistance than other biometric technologies. In training to build a verification model, negative samples are required to build the model, but in most practical applications it is not easy to get negative samples - forgery signatures. In this paper, proposed is a method using someone else's signatures as negative samples. In verification, shape-based features extracted from the time-sequenced signature data are extracted and a support vector machine is used to verify. SVM tries to map a feature vector to a high dimensional space and to draw a linear boundary in the high dimensional space. SVM is one of the best classifiers and has been applied to various applications. Using general handwriting data, i.e., someone else's signatures which have little in common with positive samples improved the verification rate experimentally, which means that signature verification without negative samples is possible.

DEVELOPMENT AND PRELIMINARY ASSESSMENT OF A THREE-DIMENSIONAL THERMAL HYDRAULICS CODE, CUPID

  • Jeong, Jae-Jun;Yoon, Han-Young;Park, Ik-Kyu;Cho, Hyoung-Kyu;Lee, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.279-296
    • /
    • 2010
  • For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been developed. The CUPID code adopts a two-fluid, three-field model for two-phase flows, and the governing equations were solved over unstructured grids, which are very useful for the analysis of flows in complicated geometries. To obtain numerical solutions, the semi-implicit numerical method for the REALP5 code was modified for an application to unstructured grids, and it has been further improved for enhanced accuracy and fast running. For the verification of the CUPID code, a set of conceptual problems and experiments were simulated. This paper presents the flow model, the numerical solution method, and the results of the preliminary assessment.

Design and Experimental Verification of Two Dimensional Asymmetric Supersonic Nozzle (이차원 비대칭형 초음속 노즐 설계와 실험적 검증)

  • Kim, Chae-Hyoung;Sung, Kun-Min;Jeung, In-Seuck;Choi, Byoung-Il;Kouchi, Toshinori;Masuya, Goro
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.899-905
    • /
    • 2009
  • Most supersonic-flow test facility has axisymmetric nozzles or two-dimensional symmetric nozzles. Compared to these nozzles, a two-dimensional asymmetric nozzle has advantages of reducing low cost for various Mach number testing and undesirable flow structure such as shock wave reflection because the nozzle part can be directly connected to the test section part in this type of nozzle. The two-dimensional asymmetric nozzle, which was Mach number 2, was designed for supersonic combustion experiment. And it was verified with the numerical analysis and visualization of Mach wave. This study suggested the practical method for design and verification of supersonic two dimensional asymmetric nozzles.

The Properties of Beam Intensity Scanner(BInS) in IMRT with Phantom for Three Dimensional Dose Verification

  • Young W. Vahc;Park, Kwangyl;Byung Y. Yi;Park, Kyung R.;Lee, Jong Y.;Ohyun Kwon;Park, Kwangyl;Kim, Keun M.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.64-64
    • /
    • 2003
  • Objectives: Patient dose verification is clinically the most important parts in the treatment delivery of radiation therapy. The three dimensional(3D) reconstruction of dose distribution delivered to target volume helps to verify patient dose and determine the physical characteristics of beams used in intensity modulated radiation therapy(IMRT). We present Beam Intensity Scanner(BInS) system for the pre treatment dosimetric verification of two dimensional photon intensity. The BInS is a radiation detector with a custom made software for relative dose conversion of fluorescence signals from scintillator. Methods: This scintillator is fabricated by phosphor Gadolinium Oxysulphide and is used to produce fluorescence from the irradiation of 6MV photons on a Varian Clinac 21EX. The digitized fluoroscopic signals obtained by digital video camera will be processed by our custom made software to reproduce 3D relative dose distribution. For the intensity modulated beam(IMB), the BInS calculates absorbed dose in absolute beam fluence, which are used for the patient dose distribution. Results: Using BInS, we performed various measurements related to IMRT and found the followings: (1) The 3D dose profiles of the IMBs measured by the BInS demonstrate good agreement with radiographic film, pin type ionization chamber and Monte Carlo simulation. (2) The delivered beam intensity is altered by the mechanical and dosimetric properties of the collimating of dynamic and/or static MLC system. This is mostly due to leaf transmission, leaf penumbra, scattered photons from the round edges of leaves, and geometry of leaf. (3) The delivered dose depends on the operational detail of how to make multileaf opening. Conclusions: These phenomena result in a fluence distribution that can be substantially different from the initial and calculative intensity modulation and therefore, should be taken into account by the treatment planing for accurate dose calculations delivered to the target volume in IMRT.

  • PDF