• 제목/요약/키워드: Dimensional Variations

Search Result 632, Processing Time 0.031 seconds

Classification of Textural Descriptors for Establishing Texture Naming System(TNS) of Fabrics -Textural Descriptions of Women's Suits Fabrics for Fall/winter Seasons- (옷감의 질감 명명 체계 확립을 위한 질감 속성자 분류 -여성 슈트용 추동복지의 질감 속성을 중심으로-)

  • Han Eun-Gyeong;Kim Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.5 s.153
    • /
    • pp.699-710
    • /
    • 2006
  • The objective of this study was to identify the texture-related components of woven fabrics and to develop a multidimensional perceptual structure map to represent the tactile textures. Eighty subjects in clothing and tektite industries were selected for multivariate data on each fabric of 30 using the questionnaire with 9 pointed semantic differential scales of 20 texture-related adjectives. Data were analyzed by factor analysis, hierarchical cluster analysis, and multidimensional scaling(MDS) using SPSS statistical package. The results showed that the five factors were selected and composed of density/warmth-coolness, stiffness, extensibility, drapeability, and surface/slipperiness. As a result of hierarchical cluster analysis, 30 fabrics were grouped by four clusters; each cluster was named with density/warmth-coolness, surface/slipperiness, stiffness, and extensibility, respectively. By MDS, three dimensions of tactile texture were obtained and a 3-dimensional perceptual structure map was suggested. The three dimensions were named as surface/slipperiness, extensibility, and stiffness. We proposed a positioning perceptual map of fabrics related to texture naming system(TNS). To classify the textural features of the woven fabrics, hierarchical cluster analysis containing all the data variations, even though it includes the errors, may be more desirable than texture-related multidimensional data analysis based on factor loading values in respect of the effective variables reduction without losing the critical variations.

Influence of intake runner cross section design on the engine performance parameters of a four stroke, naturally aspirated carbureted SI engine

  • Singh, Somendra Pratap;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • The current scenario of the transportation sector reflects the urgent need to address issues such as depletion of traditional fuel reserves and ever growing pollution levels. Researchers around the world are focussing on alternatives as well as optimisation of currently employed devices to reduce the pollution levels generated by the commonly used fuels. One such optimisation involves the study of air flow within the intake manifolds of SI engines. It is a well-known fact that alterations in the air manifolds of engines have a significant impact on the engine performance parameters, fuel consumption and emission levels. Previous works have demonstrated the impacts of runner lengths, diameter, plenum volume, taper angle of distribution manifolds and other factors on in-cylinder fluid motion and engine performance. However, a static setup provides an optimal configuration only at a specific engine speed. This paper aims to investigate the variations in the same parameters on a four stroke, naturally aspirated single cylinder SI engine through varying the cross section design over the intake runner with the aid of Computational Fluid Dynamics. The system consists of segments that form the intake runner with projections on the inside that allow various permutations of the intake runner segments. The various configurations provide the optimised fluid flow characteristics within the intake manifold at specific engine speed intervals. The variations such as turbulence, air fuel mixing are analysed using the three dimensional CFD software FLUENT. The results can be used further for developing an automated or manually adjustable intake manifold.

Resonance Phenomenon according to the relationship between Span Length of the Bridge and Effective Beating Interval of High-Speed Train (교량의 지간장과 고속전철하중 유효타격간격 사이의 관계에 따른 공진현상)

  • 김성일;곽종원;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.67-76
    • /
    • 1999
  • Resonance of the bridge can be occurred with the coincidence between a natural frequency of the bridge and a crossing frequency of moving loads which is determined from the speed and effective beating interval of the vehicle. In case of the railway bridge, the effective beating interval of the vehicle is fixed under the passage of specific trains. In the present study, resonance and cancellation of the bridge subjected to moving high-speed train are analyzed with the variations of span length. A steel-concrete composite railway bridge is idealized by the combinations of plate elements and space frame elements. High-speed train is idealized with moving constant forces and a 3-dimensional full modelling. From analyzing dynamic responses of D.M.F of vertical displacement, maximum vertical acceleration of the slab, and end rotation according to the variations of span length of the bridge, design criteria of span length of the bridge which satisfies dynamic safety is discussed.

  • PDF

Kinematic Analysis of Lower Extremity and Evaluation of Skill of Skier Using Parameters of Inertial Sensors During Ski Simulator Exercise (스키 시뮬레이터 운동 시 하지 운동특성 분석 및 관성센서 파라미터를 이용한 스키 숙련도 평가)

  • Kim, Jungyoon;Ahn, Soonjae;Park, Sunwoo;Shin, Isu;Kim, Gyoosuk;Kim, Youngho
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.35-41
    • /
    • 2014
  • In this study, joint angles of the lower extremity and inertial sensor data such as accelerations and angular velocities were measured during a ski simulator exercise in order to evaluate the skill of skiers. Twenty experts and twenty unskilled skiers were recruited for the study. All expert skiers held the certificates issued by the Korea Ski Instructors Association. A three-dimensional motion capture system and two inertial sensors were used to acquire joint movements, heel acceleration and heel angular velocity during ski simulator exercises. Pattern variation values were calculated to assess the variations in ski simulator motion of expert and unskilled skiers. Integral ratio of roll angular velocity was calculated to determine the parallel alignment of the two feet. Results showed that ski experts showed greater range of motion of joint angle, peak-to-peak amplitude(PPA) of heel acceleration and PPA of heel angular velocity than unskilled skiers. Ski experts showed smaller pattern variations than unskilled skiers. In addition, the integral ratio of roll angular velocity in ski experts was closer to 1. Inertial sensor data measurements during the ski simulator exercises could be useful to evaluate the skill of the skier.

Numerical Model Experiments on the Tidal Current Variations Due to the Bridge Piers Construction near the Straits of Narodo Islands (교각건설로 인한 나로도 협수로 부근해역에서의 조류변화 수치모형 실험)

  • LEE Moon-Ock
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.1
    • /
    • pp.47-58
    • /
    • 1994
  • Field observation and numerical experiments with a two-dimensional depth-integrated model were undertaken in order to investigate some of the effects on the flow structure resulting from the construction of a bridge connecting Kohung Peninsula and the Narodo Islands on the southern coast of Korea. Tidal currents passing through the straits between the Narodo Islands showed that, although the phase lagged one hour behind that passing through the strait between Kohung Peninsula and Naenarodo Island, it still kept strong flows of more than 80cm/sec near the bottom. The seawater temperature and salinity within the study area seemed to be higher southward but uniform vertically. The results of the drogue experiments in the straits between the Narodo Islands showed that the drogues moved northward of Sayangdo in the early part of the flood tide, but southward in the late part of the flood tide and finally stopped a mile from the east coast of Surakdo. On the other hand, the numerical computation showed that the flow structures after construction of the bridge piers were basically in line with those before construction of the bridge piers, except for the slight variations of velocities in the vicinity of the bridge piers. A large scale clockwise circulation has been confirmed in the south area of Namsungri of Kohung Peninsula from the computational results of tide-induced residual currents. Referring to these computational results, the impact category on the flow structures due to the bridge piers construction has been estimated to be within around 2km. The results were in good agreement with the field observations.

  • PDF

3-Dimensional Sequence Interpretation of Seismic Attributes in the Structurally Complex Area (복잡한 지질구조 지역에서의 3차원 탄성파 Attribute를 이용한 층서해석 사례)

  • Kim, Kun-Deuk
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.3
    • /
    • pp.149-153
    • /
    • 1999
  • The study was performed as a part of 3-D exploration project of the South Con Son basin, where Korea National Oil Co. (KNOC) and SHELL Company are performing joint operation. In the structurally complex area, seismic facies or lap-out patterns, which are usually the tools for the conventional seismic stratigraphy developed by Exxon Group (Vail et at., 1977), are not easily identifiable. Therefore, stratigraphic informations are mainly extracted from seismic attribute maps of each sequence or systems tracts, and isopach maps in correlation with the stratigraphic information from the wells. The attribute maps of the sequence or systems tract boundaries and isopach map describe the variations of paleodepositional environments. The shape of the attribute maps of the boundaries is a reasonable description of the shape of the paleodepositional surface. With other maps such as isopach and structural maps, the variations of the parasequences in the systems tracts can be projected using the surface attribute maps. The reflection intensity attribute at each sequence or system tract boundary can be related to lithology, facies or porosity distributions. The azimuth attribute of source rock sequence can be used to identify the hydrocarbon migration patterns into the prospects. The overall risks of reservoir rocks, cap rocks, structure and hydrocarbon migrations were computed using the results of the study.

  • PDF

Analysis the Effects of Physical Blocking Weirs on the Water Quality in Daechung Reservoir (물리적 차단시설이 대청호 수질에 미치는 효과 분석)

  • Lee, Heungsoo;Chung, Sewoong;Park, Hyungseok;Jeong, Donghwan
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.25-39
    • /
    • 2012
  • This study was aimed to assess the effects of additional installation of two different types of weirs, one is a curtain-type weir and another is a submerged-type weir, on the control of algal growth in Daechung Reservoir. A two-dimensional(2D) coupled hydrodynamic and eutrophication model that can accommodate vertical movement of the curtain weir following the water surface variations was verified using field data obtained in two distinctive hydrological years; dry(2008) and wet(2010). The model adequately simulated the temporal and spatial variations of water temperature, nutrients and algal(Chl-a) concentrations during the periods. The effectiveness of curtain weir on the control of algal bloom was evaluated by applying the model to 2001(dry year) and 2010 assuming 6 different scenarios according to installation locations. The curtain weirs that already installed at 3, 5, 7 sites(scenario C-2) showed significant effect on the control of algal growth in the reservoir; the reduction rates of algal concentration were placed in the range of 7.5~31.5% and 9.1~44.9% for 2001 and 2010, respectively. However the simulation results revealed that additional installation of curtain weirs(scenario C-3~C-6) in the bay area (choosori) have marginal effect. The effectiveness of submerged weir was evaluated against 2010 assuming 7 different scenarios according to installation locations, but all scenarios(S-1~S-7) showed neglectable or negative effect on the control of algal growth.

Investigation into Variations of Welding Residual Stresses and Redistribution Behaviors for Different Repair Welding Widths (보수용접부 폭에 따른 용접잔류응력의 변화 및 재분배 거동 평가)

  • Park, Chi-Yong;Lee, Hwee-Sueng;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.177-184
    • /
    • 2014
  • In this study, we investigated the variations in welding residual stresses in dissimilar metal butt weld due to width of repair welding and re-distribution behaviors resulting from similar metal welding (SMW) and mechanical loading. To this end, detailed two-dimensional axi-symmetric finite element (FE) analyses were performed considering five different repair welding widths. Based on the FE results, we first evaluated the welding residual stress distributions in repair welding. We then investigated the re-distribution behaviors of the residual stresses due to SMW and mechanical loads. It is revealed that large tensile welding residual stresses take place in the inner surface and that its distribution is affected, provided repair welding width is larger than certain value. The welding residual stresses resulting from repair welding are remarkably reduced due to SMW and mechanical loading, regardless of the width of the repair welding.

Morphometric Variations in the Volar Aspect of the Distal Radius

  • Kwon, Bong Cheol;Lee, Joon Kyu;Lee, Suk Yoon;Hwang, Jae Yeun;Seo, Jang-Hyeon
    • Clinics in Orthopedic Surgery
    • /
    • v.10 no.4
    • /
    • pp.462-467
    • /
    • 2018
  • Background: Significant discrepancy exists between anatomical plate designs and the anatomy of the native distal radius, which may be attributable to considerable morphometric variations in the volar aspect of the distal radius. We aimed to evaluate the degree of variability in the morphometry of the distal radius and identify factors associated with this variability. Methods: We measured the volar surface angle (VSA) of the intermediate and lateral columns and the volar surface width (VSW) in the distal radius from three-dimensional computed tomography scans acquired from 81 cadaveric forearms. These morphometric parameters were compared between the lateral and intermediate columns, between males and females, and between Koreans and Caucasians. Caucasian morphometric data were obtained and pooled from the previous studies. The coefficient of variation was used to assess the variability of the parameters and Cohen's d to estimate the effect size of the difference between groups. Results: The average VSA of the lateral column was $22^{\circ}{\pm}6^{\circ}$, and that of the intermediate column was $29^{\circ}{\pm}8^{\circ}$ in Koreans (p < 0.001). The variability was high for both VSAs. The VSA of the intermediate column was significantly larger in males than in females (p < 0.001) and in Caucasians than in Koreans (p < 0.001). The average VSW of distal radius was $30{\pm}3mm$ at the watershed line, and it became narrower proximally. The VSW was significantly larger in males than in females (p < 0.001) and in Koreans than in Caucasians (p < 0.001). The effect sizes of the difference for the VSA and VSW between sexes, races and columns were medium to large. Conclusions: Considerable variability exists in the morphometry of the volar distal radius, with sex, race, and column as contributing factors. These results suggest that surgeons should carefully choose an anatomical volar locking plate with appropriate angulation characteristics for each patient to achieve patient-specific alignment of the distal radius.

Experimental and numerical study of Persian brick masonry barrel vaults under probable structural hazards

  • Saeid Sinaei;Esmaeel Izadi Zaman Abadi;Seyed Jalil Hoseini
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.317-332
    • /
    • 2023
  • Understanding and analysing the behaviour and response of historical structures in the face of climate changes and environmental conditions is of utmost significance for their preservation. There are several structural hazards associated with climate and hydrology changes in the region, including the settlement of piers, the rotation of piers, and temperature changes. The present study investigates the experimental and numerical structural behaviour of skewed and non-skewed Persian brick masonry barrel vaults under various conditions. The external loading conditions included pier rotation in five modes, settlement, and temperature variations in four states. Initially, the experiments extracted the mechanical properties of the scaled materials. Then, three semi-circular brick barrel vaults were tested with gravitational loads. The outcomes were used to develop and validate the finite element model. Following the development of the finite element model, numerical and parametric studies were conducted on the effect of the aforementioned structural hazards on the response of brick masonry barrel vaults with various Persian geometries (semi-circular, drop pointed, and four-centred), angles of skew (0, 15, 30, and 45 degrees), and dimensional ratios. According to the findings, the fragility of masonry materials makes historical structures susceptible to failure under different loading. A brick barrel vault fails in the presence of minor rotation and settlement of the piers. The four-centred geometric shape has the lowest performance among the seven Persian geometries; therefore, its health monitoring and retrofitting should be prioritised. In Isfahan, Iran, temperature variations, particularly during the warm seasons, cause critical conditions in such structures.