• Title/Summary/Keyword: Dimensional Variations

Search Result 632, Processing Time 0.028 seconds

Assessing Temporal and Spatial Salinity Variations in Estuary Reservoir Using EFDC (염분수지 및 EFDC 모형을 이용한 간척 담수화호 염도변화모의)

  • Seong, Choung Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.139-147
    • /
    • 2014
  • Forecasting salinity in an estuary reservoir is essential to promise irrigation water for the reclaimed land. The objective of the research was to assess salinity balance and its temporal and spatial variations in the Iwon estuary reservoir which has been issued by its high contents of salinity in spite of desalination process for four years. Seepage flows through the see dikes which could be one of possible reason of high salinity level of the reservoir was calculated based on the salinity balance in the reservoir, and used as input data for salinity modeling. A three-dimensional hydrodynamic model, Environmental Fluid Dynamics Code (EFDC), was used to simulate salinity level in the reservoir. The model was calibrated and validated based on weekly or biweekly observed salinity data from 2006 to 2010 in four different locations in the reservoir. The values of $R^2$, RMSE and RMAE between simulated and observed salinity were calculated as 0.70, 2.16 dS/m, and 1.72 dS/m for calibration period, and 0.89, 1.15 dS/m, and 0.89 dS/m for validation period, respectively, showing that simulation results was generally consistent with the observation data.

Modeling mesoscale uncertainty for concrete in tension

  • Tregger, Nathan;Corr, David;Graham-Brady, Lori;Shah, Surendra
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.347-362
    • /
    • 2007
  • Due to heterogeneities at all scales, concrete exhibits significant variability in mechanical behavior from sample to sample. An understanding of the fundamental mechanical performance of concrete must therefore be embedded in a stochastic framework. The current work attempts to address the connection between a two-dimensional concrete mesostructure and the random local material properties associated within that mesostructure. This work builds on previous work that has focused on the random configuration of concrete mesostructures. This was accomplished by developing an understanding of the effects of variations in the mortar strength and the mortar-aggregate interfacial strength in given deterministic mesostructural configurations. The results are assessed through direct tension tests that are validated by comparing experimental results of two different, pre-arranged mesostructures, with the intent of isolating the effect of local variations in strength. Agreement is shown both in mechanical property values as well as the qualitative nature of crack initiation and propagation.

Industry 4.0 - A challenge for variation simulation tools for mechanical assemblies

  • Boorla, Srinivasa M.;Bjarklev, Kristian;Eifler, Tobias;Howard, Thomas J.;McMahon, Christopher A.
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.43-52
    • /
    • 2019
  • Variation Analysis (VA) is used to simulate final product variation, taking into consideration part manufacturing and assembly variations. In VA, all the manufacturing and assembly processes are defined at the product design stage. Process Capability Data Bases (PCDB) provide information about measured variation from previous products and processes and allow the designer to apply this to the new product. A new challenge to this traditional approach is posed by the Industry 4.0 (I4.0) revolution, where Smart Manufacturing (SM) is applied. The manufacturing intelligence and adaptability characteristics of SM make present PCDBs obsolete. Current tolerance analysis methods, which are made for discrete assembly products, are also challenged. This paper discusses the differences expected in future factories relevant to VA, and the approaches required to meet this challenge. Current processes are mapped using I4.0 philosophy and gaps are analysed for potential approaches for tolerance analysis tools. Matching points of simulation capability and I4.0 intents are identified as opportunities. Applying conditional variations, incorporating levels of adjustability, and the un-suitability of present Monte Carlo simulation due to changed mass production characteristics, are considered as major challenges. Opportunities including predicting residual stresses in the final product and linking them to product deterioration, calculating non-dimensional performances and extending simulations for process manufactured products, such as drugs, food products etc. are additional winning aspects for next generation VA tools.

Multiepoch Optical Images of IRC+10216 Tell about the Central Star and the Adjacent Environment

  • Kim, Hyosun;Lee, Ho-Gyu;Ohyama, Youichi;Kim, Ji Hoon;Scicluna, Peter;Chu, You-Hua;Mauron, Nicolas;Ueta, Toshiya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.36.1-37
    • /
    • 2021
  • Six images of IRC+10216 taken by the Hubble Space Telescope at three epochs in 2001, 2011, and 2016 are compared in the rest frame of the central carbon star. An accurate astrometry has been achieved with the help of Gaia Data Release 2. The positions of the carbon star in the individual epochs are determined using its known proper motion, defining the rest frame of the star. In 2016, a local brightness peak with compact and red nature is detected at the stellar position. A comparison of the color maps between 2016 and 2011 epochs reveals that the reddest spot moved along with the star, suggesting a possibility of its being the dusty material surrounding the carbon star. Relatively red, ambient region is distributed in an Ω shape and well corresponds to the dusty disk previously suggested based on near-infrared polarization observations. In a larger scale, differential proper motion of multiple ring-like pattern in the rest frame of the star is used to derive the average expansion velocity of transverse wind components, resulting in ~12.5 km s-1 (d/123 pc), where d is the distance to IRC+10216. Three dimensional geometry is implied from its comparison with the line-of-sight wind velocity determined from half-widths of submillimeter emission line profiles of abundant molecules. Uneven temporal variations in brightness for different searchlight beams and anisotropic distribution of extended halo are revisited in the context of the stellar light illumination through a porous envelope with postulated longer-term variations for a period of 10 years.

  • PDF

Effects of Two-dimensional Heat and Mass Transports on Condensational Growth of Soot Particles in a Tubular Coater (원형관 코팅장치에서 연소 입자의 응축성장에 미치는 2차원 열 및 물질전달의 영향)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.163-171
    • /
    • 2013
  • Soot particles emitted from combustion processes are often coated by non-absorbing organic materials, which enhance the global warming effect of soot particles. It is of importance to study the condensation characteristics of soot particles experimentally and theoretically to reduce the uncertainty of the climate impact of soot particles. In this study, the condensational growth of soot particles in a tubular coater was modeled by a one-dimensional (1D) plug flow model and a two-dimensional (2D) laminar flow model. The effects of 2D heat and mass transports on the predicted particle growth were investigated. The temperature and coating material vapor concentration distributions in radial direction, which the 1D model could not accounted for, affected substantially the particle growth in the coater. Under the simulated conditions, the differences between the temperatures and vapor concentrations near the wall and at the tube center were large. The neglect of these variations by the 1D model resulted in a large error in modeling the mass transfer and aerosol dynamics occurring in the coater. The 1D model predicted the average temperature and vapor concentration quite accurately but overestimated the average diameter of the growing particles considerably. At the outermost grid, at which condensation begins earliest due to the lowest temperature and saturation vapor concentration, condensing vapor was exhausted rapidly because of the competition between condensations on the wall and on the particle surface, decreasing the growth rate. At the center of the tube, on the other hand, the growth rate was low due to high temperature and saturation vapor concentration. The effects of Brownian diffusion and thermophoresis were not high enough to transport the coating material vapor quickly from the tube center to the wall. The 1D model based on perfect radial mixing could not take into account this phenomenon, resulting in a much higher growth rate than what the 2D model predicted. The result of this study indicates that contrary to a previous report for a thermodenuder, 2D heat and mass transports must be taken into account to model accurately the condensational particle growth in a coater.

Assessment of the Counter-Flow Thrust Vector Control in a Three-Dimensional Rectangular Nozzle (3차원 직사각형 노즐에서 역유동 추력벡터 제어 평가)

  • Wu, Kexin;Kim, Tae Ho;Kochupulickal, James Jintu;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.34-46
    • /
    • 2020
  • Computational assessment of gas-dynamic characteristics is explored for a three-dimensional counter-flow thrust vector control system in a rectangular supersonic nozzle. This convergent-divergent nozzle is designed by Method of Characteristics and its design Mach number is specially set as 2.5. Performance variations of the counter-flow vector system are illustrated by varying the gap height of the secondary flow duct. Key parameters are quantitatively analyzed, such as static pressure distribution along the centerline of the upper suction collar, deflection angle, secondary mass flow ratio, and resultant thrust coefficient. Additionally, the streamline on the symmetry plane, three-dimensional iso-Mach number surface contour, and three-dimensional turbulent kinetic energy contour are presented to reveal overall flow-field characteristics in detail.

Three-dimensional changes in lip vermilion morphology of adult female patients after extraction and non-extraction orthodontic treatment

  • Liu, Zhi-Yu;Yu, Jie;Dai, Fan-Fan;Jiang, Ruo-Ping;Xu, Tian-Min
    • The korean journal of orthodontics
    • /
    • v.49 no.4
    • /
    • pp.222-234
    • /
    • 2019
  • Objective: To investigate the three-dimensional lip vermilion changes after extraction and non-extraction orthodontic treatment in female adult patients and explore the correlation between lip vermilion changes and incisor changes. Methods: Forty-seven young female adult patients were enrolled in this study (skeletal Class III patients were excluded), including 34 lip-protruding patients treated by extraction of four first premolars (18 patients requiring mini-implants for maximum anchorage control and 16 patients without mini-implants) and 13 patients requiring non-extraction treatment. Nine angles, seven distances, and the surface area of the lip vermilion were measured by using pre- and post-treatment three-dimensional facial scans. Linear and angular measurements of incisors were performed on lateral cephalograms. Results: There were no significant changes in the vermilion measurements in the non-extraction group. The vermilion angle, vermilion height, central bow angle, height/width ratio, and vermilion surface area decreased significantly after the orthodontic treatment in the extraction groups, but the upper/lower vermilion proportion remained unchanged. Significant correlations were found between the changes in incisor position and those in vermilion angles, vermilion height, and surface area. Conclusions: Extraction of the four first premolars probably produced an aesthetic improvement in lip vermilion morphology. However, the upper/lower vermilion proportion remained unchanged. The variations in the vermilion were closely related to incisor changes, especially the upper incisor inclination changes.

The effects of knit stitches on the knit construction and the dimensional stability to washing and drying of wool weft-knitted fabrics (세탁과 건조에 따른 양모 위편성물의 편성조직별 형태 변화)

  • Park, Seeun;Baek, Seong Phil;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • The purpose of this study is to analyze the structural properties of 100% wool fabrics knitted with various stitch types and to evaluate dimensional stability from shrinkage in wet cleaning and drying. Materials were weft-knitted from twenty-four different stitches with 7 gauge using a computerized flatbed knitting machine. Weight, thickness, density, and length were measured. A domestic washing machine and a tumble dryer were used for the shrinkage test. The results are as follows: Knitted fabrics were divided into 3 groups based on weight per unit area. Porous knits show light weight whilst milano, pintuck, rib stitches belong to the heaviest group. A positive correlation between weight and thickness was found and the same result was obtained for wale density and weight. Dimensional shrinkage of knitted fabrics was increased during repetitive wet cleaning and drying regardless of knit stitches. Especially, fabrics knitted with float, tuck, cable, and links & links stitches samples were contracted more than 15% in the first treatment whereas 2x1 rib stitch showed 1% shrinkage rate. Fisherman and milano stitches contracted in both course and wale direction with similar shrinkage rates. However, porous knits with float and tuck stitches shrank in course direction by 20% as well as cable samples contracted from 5% to 20% after repeated washing and drying. On the other hand, 30% and 15% contraction of wale direction occurred in orderly float and links & links stitches, respectively. Machine dried knits have a higher shrinkage rate than air-dried knits, but the drying method did not affect to the direction of contraction. In conclusion, variations of knit, tuck, and float stitches affect knit construction and dimensional stability from shrinkage in wet cleaning and drying of wool knitted fabrics.

Kinematic Factors Influencing on the Precision of Short Approach Shoots in Golf (골프의 짧은 어프로치 동작 시 타구의 정확성에 영향을 미치는 운동학적 변인 분석)

  • Kim, Ho-Mook;Woo, Sang-Yeon;Jung, Seung-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.227-237
    • /
    • 2007
  • The purpose of this study was to examine the effect of precision that kinematics had when short approach shots were taken. In this study, the subjects chosen were 5 skilled and 5 unskilled subjects, who were allowed to shoot 10 rounds of shots at target distances of 1m, 2m, 4m, and 8m. Three dimensional analysis was used as methods to obtain kinematics of each shots. In order to verify the statistical significance of the kinematic factors followed by the results of different skills and target distances, we used the two-way repeated ANOVA. The study was experimented within the level of p<.05. The results obtained were as follows: 1) the difference of shots of the forward and backward variations were larger than those of the left and right variations, the unskilled subjects' shot distances greatly got larger than that of the skilled subjects as the distance of the target increased, 2) not being affected by the target distance variations, the skilled subjects' rate of down-swing was shorter than the back-swing on short approach shots, 3) the skilled subjects' center of body weight tended to move more naturally towards the target when doing the down-swing to finish than that of the unskilled subjects on short approach shots, 4) the skilled subjects' right hand angle of cocking were narrower and tended to be kept much more consistent than that of the unskilled subjects on short approach shots, 5) the unskilled subjects when doing their back-swings, their right hips swayed towards the back, their trunk-flexion angles were shown to be lower than that of the skilled subjects on short approach shots, 6) the skilled subjects`body weight tended to move more naturally towards the left foot when doing the down-swing to finish than that of the unskilled subjects on short approach shots.

Shear lag effects on wide U-section pre-stressed concrete light rail bridges

  • Boules, Philopateer F.;Mehanny, Sameh S.F.;Bakhoum, Mourad M.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.67-80
    • /
    • 2018
  • Recently, U-section decks have been more and more used in metro and light rail bridges as an innovative concept in bridge deck design and a successful alternative to conventional box girders because of their potential advantages. U-section may be viewed as a single vent box girder eliminating the top slab connecting the webs, with the moving vehicles travelling on the lower deck. U-section bridges thus solve many problems like limited vertical clearance underneath the bridge lowest point, besides providing built-in noise barriers. Beam theory in mechanics assumes that plane section remains plane after bending, but it was found that shearing forces produce shear deformations and the plane section does not remain plane. This phenomenon leads to distortion of the cross section. For a box or a U section, this distortion makes the central part of the slab lagging behind those parts closer to the webs and this is known as shear lag effect. A sample real-world double-track U-section metro bridge is modelled in this paper using a commercial finite element analysis program and is analysed under various loading conditions and for different geometric variations. The three-dimensional finite element analysis is used to demonstrate variations in the transverse bending moments in the deck as well as variations in the longitudinal normal stresses induced in the cross section along the U-girder's span thus capturing warping and shear lag effects which are then compared to the stresses calculated using conventional beam theory. This comparison is performed not only to locate the distortion, warping and shear lag effects typically induced in U-section bridges but also to assess the main parameters influencing them the most.