• Title/Summary/Keyword: Dimension optimization

Search Result 196, Processing Time 0.023 seconds

Efficient NLP Techniques for the Optimum Design of Simple Steel Plate Girder Cross Section (단순강판형 단면의 최적설계를 위한 효율적인 비선형계획기법)

  • 김종옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.111-122
    • /
    • 1994
  • In this study, an algorithm which can be applied to the optimum design of simple steel plate girders was developed, and efficient optimization strategies for the solution of algorithm were found out. The optimum design algorithm consists of 3-levels of optimization. In the first and second levels of optimization, the absolute maximum bending moment and shearing force are extracted and in the third level of optimization, the optimum cross section of steel plate girder is determined. For the optimum design of cross section, the objective function is formulated as the total area of cross section and constraints are derived in consideration of the various stresses and the minimum dimension of flange and web based on the part of steel bridge in the Korea standard code of road bridge. Sequential unconstrained minimization technique using the exterior penalty function method(SUMT-EP), sequential linear programming(SLP) and sequential quadratic programming (SQP) are proved to be efficient and robust strategies for the optimum design of simple plate girder cross section. From the reliable point of view, SLP is the most efficient and robust strategy and SQP is the most efficient one from the viewpoint of converguency and computing time.

  • PDF

Parametric optimization of FPSO hull dimensions for Brazil field using sophisticated stability and hydrodynamic calculations

  • Lee, Jonghun;Kim, Byung Chul;Ruy, Won-Sun;Han, Ik Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.478-492
    • /
    • 2021
  • In this study, hull dimensions of an FPSO were optimized to maximize its operability at Brazil field. In contrast with the previous works which have used simplified models to evaluate some indicators related to stability and hydrodynamic performances of FPSOs for its own optimal design, we developed a generic hull and compartment modeler and sophisticated stability and hydrodynamic calculation modules. With the aid of the developed tools, the hull optimization was performed with initial dimensions of an FPSO originally designed for west Africa field. The optimization results indicated the relative importance of hydrodynamic performances compared with stability performances for the FPSO hull dimensioning by showing that there were 3 active constraints related to them, which were the natural periods of heave and roll and the maximum pitch angle under 1-year return period waves at full load condition. To the author's knowledge, this study is the first attempt to combine altogether the hull and compartment modeling and full set of stability and hydrodynamic calculations precisely to optimize an FPSO's hull dimensions within 30 min. Also, it is worthwhile to mention that the developed methods are generic enough to be applied to all types of ship-shaped offshore platforms.

Bayesian Reliability Analysis Using Kriging Dimension Reduction Method (KDRM) (크리깅 기반 차원감소법을 이용한 베이지안 신뢰도 해석)

  • An, Da-Wn;Choi, Joo-Ho;Won, Jun-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.602-607
    • /
    • 2008
  • A technique for reliability-based design optimization(RBDO) is developed based on the Bayesian approach, which can deal with the epistemic uncertainty arising due to the limited number of data. Until recently, the conventional RBDO was implemented mostly by assuming the uncertainty as aleatory which means the statistical properties are completely known. In practice, however, this is not the case due to the insufficient data for estimating the statistical information, which makes the existing RBDO methods less useful. In this study, a Bayesian reliability is introduced to take account of the epistemic uncertainty, which is defined as the lower confidence bound of the probability distribution of the original reliability. In this case, the Bayesian reliability requires double loop of the conventional reliability analyses, which can be computationally expensive. Kriging based dimension reduction method(KDRM), which is a new efficient tool for the reliability analysis, is employed to this end. The proposed method is illustrated using a couple of numerical examples.

  • PDF

Optimum Seismic Design of Reinforced Concrete Piers Considering Economy and Constructivity (내진설계시 경제성 및 시공성을 고려한 RC 교각의 최적설계)

  • 조병완;김영진;윤은이
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.479-484
    • /
    • 2000
  • In this study, optimal design of reinforced concrete piers under seismic load is numerically investigated. Object function is the area of the concreate-section. Design variables are the total area of reinforcement and concrete-section dimension(Circular section diameter). Constraints of the design strength of the column, longitudinal reinforcement ratio and lower and upper bounds on the design variables are imposed. The reinforcement concrete column is analysed and designed by the Ultimated Strength Design method and load combination involving dead, live, wind and seismic load is used. For numerical optimization, ADS(Garret N, Vanderplaats_ routine is used. From the result of numerical examples, the concrete-section dimension was reduced, but longitudinal reinforcement was not changed. The results show that confinement reinforcement was reduced and confinement reinforcement spacing is increased. The higher strength of reinforcement used, the more concrete-section area was reduced.

  • PDF

Modeling and Optimization of Rice Drying and Storage System in Korea(I) -Layout and Design of Model System- (한국에 있어서 미곡(米穀)의 건조(乾燥) 및 저장(貯藏)을 위한 시스템의 모델 개발 및 적정규모 선정에 관한 연구(I) -모델 시스템의 Layout 및 설계-)

  • Park, Kyung-Kyoo
    • Journal of Biosystems Engineering
    • /
    • v.11 no.2
    • /
    • pp.66-75
    • /
    • 1986
  • In order to improve the traditional post harvest system in Korea, a model for mechanized grain drying and storage facilities was developed. Also, a computer program for the model system was developed. For the study, flat type steel bin and circulation type dryer were selected for the model and Fortran language was used for the computer program. This program was tested by using various practical data. The following results were obtained from the study: 1. The general model developed can be used for designing a rough rice drying and storage facility within the range from 100 ton to 1000 ton capacity. 2. Major output of the computer program for designing a model system were as follow; a. The dimension of the plant. b. The storage bin size, dryer number and dryer size. c. The dimension of individual equipment and its required HP. d. Capital requirement and operating cost of the model system.

  • PDF

A Study on the Preliminary Ship Design Method using Deterministic Approach and Probabilistic Approach (확정론적 기법 및 확률론적 기법을 적용한 선박 초기 설계 방법에 관한 연구)

  • 양영순;박창규;유원선
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.3
    • /
    • pp.49-59
    • /
    • 2004
  • The paper describes the preliminary ship design method using deterministic approach and probabilistic approach. In deterministic approach, there are computational aspects to applying not only the integration concurrently of principal dimension decisions and hull form variations but also hydrostatic coefficients that applied to optimization iterative process. Therefore, this paper developed that actual design concept at the preliminary ship design more than sequential design which separated in principal dimension decisions and hull form variations. Furthermore, a probabilistic approach at the preliminary ship design is applied to efficiently solve design information uncertainty that compared to deterministic approach.

Optimization of Model based on Relu Activation Function in MLP Neural Network Model

  • Ye Rim Youn;Jinkeun Hong
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.80-87
    • /
    • 2024
  • This paper focuses on improving accuracy in constrained computing settings by employing the ReLU (Rectified Linear Unit) activation function. The research conducted involves modifying parameters of the ReLU function and comparing performance in terms of accuracy and computational time. This paper specifically focuses on optimizing ReLU in the context of a Multilayer Perceptron (MLP) by determining the ideal values for features such as the dimensions of the linear layers and the learning rate (Ir). In order to optimize performance, the paper experiments with adjusting parameters like the size dimensions of linear layers and Ir values to induce the best performance outcomes. The experimental results show that using ReLU alone yielded the highest accuracy of 96.7% when the dimension sizes were 30 - 10 and the Ir value was 1. When combining ReLU with the Adam optimizer, the optimal model configuration had dimension sizes of 60 - 40 - 10, and an Ir value of 0.001, which resulted in the highest accuracy of 97.07%.

A concise overview of principal support vector machines and its generalization

  • Jungmin Shin;Seung Jun Shin
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.2
    • /
    • pp.235-246
    • /
    • 2024
  • In high-dimensional data analysis, sufficient dimension reduction (SDR) has been considered as an attractive tool for reducing the dimensionality of predictors while preserving regression information. The principal support vector machine (PSVM) (Li et al., 2011) offers a unified approach for both linear and nonlinear SDR. This article comprehensively explores a variety of SDR methods based on the PSVM, which we call principal machines (PM) for SDR. The PM achieves SDR by solving a sequence of convex optimizations akin to popular supervised learning methods, such as the support vector machine, logistic regression, and quantile regression, to name a few. This makes the PM straightforward to handle and extend in both theoretical and computational aspects, as we will see throughout this article.

3D Neighborhood Relationships of Cellular Genetic Algorithms for the Tour Guide Assignment Problem

  • Setiyani, Lina;Okazaki, Takeo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.151-157
    • /
    • 2017
  • Management optimization is very important in tourism, especially when it is related to productivity. One of the problems in management optimization is tour guide assignment. Well-arranged tour guide assignment will increase productivity while maintaining service quality. A cellular genetic algorithm is one of the methods that can be used to solve this problem. Furthermore, previous study has shown that a cellular dimension increase can lead to promising benefits for certain problems. The objective of this research is to give a clear understanding of the advantages of increasing cellular dimensionality on the tour guide assignment problem by using a cellular genetic algorithm.

Shape Optimal Design to Minimize Dynamic Twisting Deformation of the Door Frame of a Microwave Oven (전자레인지 도어 프레임의 동적 비틀림 변형 최소화를 위한 형상 최적설계)

  • Lee, Boo-Youn;Koo, Jin-Young;Kim, Won-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1479-1485
    • /
    • 2006
  • To minimize the leakage of microwave which can occur when one pulls the door of a microwave oven during its operation, shape optimization of the door frame is presented. A numerical optimization is implemented to minimize the dynamic twisting deformation of the door frame. Shape design variables are defined, which represent the dimension of the bead in the flange. Two optimal design problems are established to minimize the maximum twisting deformation from harmonic response analysis. The problems are solved, their results being compared and evaluated.