• Title/Summary/Keyword: Dimension of Interaction

Search Result 263, Processing Time 0.031 seconds

STRUCTURE OF A MAGNETIC DECREASE OBSERVED IN A COROTATING INTERACTION REGION

  • LEE, ENSANG;PARKS, GEORGE K.
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.19-23
    • /
    • 2016
  • Magnetic decreases are often observed in various regions of interplanetary space. Many studies are devoted to reveal the physical nature and generation mechanism of the magnetic decreases, but still we do not fully understand magnetic decreases. In this study, we investigate the structure of a magnetic decrease observed in a corotating interaction region using multi-spacecraft measurements. We use three spacecraft, ACE, Cluster, and Wind, which were widely separated in the x- and y-directions in the geocentric solar ecliptic (GSE) coordinates. The boundaries of the magnetic decrease are the same at the three locations and can be identified as tangential discontinuities. A notable feature is that the magnetic decrease has very large dimension, ≳ RE, along the boundary, which is much larger than the size, ~ 6 RE, along the normal direction. This suggests that the magnetic decrease has a shape of a long, thin rod or a wide slab.

Protein Array Fabricated by Microcontact Printing for Miniaturized Immunoassay

  • Lee Woo-Chang;Lim Sang-Soo;Choi Bum-Kyoo;Choi Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1216-1221
    • /
    • 2006
  • A protein array was fabricated for a miniaturized immunoassay using microcontact printing ($\mu$CP). A polydimethylsiloxane (PDMS) stamp with a 5 $\mu$m$\times$5 /$\mu$m dimension was molded from a silicon master developed by photolithography. Under optimal fabrication conditions, including the baking, incubation, and exposure time, a silicon master was successfully fabricated with a definite aspect ratio. An antibody fragment was utilized as the ink for the $\mu$CP, and transferred to an Au substrate because of the Au-thiol (-SH) interaction. The immobilization and antibody-antigen interaction were investigated with fluorescence microscopy. When human serum albumin (HSA) was applied to the protein array fabricated with an antibody against HSA, the detection limit was 100 pg/ml of HSA when using a secondary antibody labeled with a fluorescence tag. The fabricated protein array maintained its activity for 14 days.

Augmented Reality Interaction With 3-Dimension Object using Wii-remote Sensor (Wii-remote 센서를 이용한 증강현실 기반 3D 가상현실과의 상호작용)

  • Kim, Byung-Ki;Ko, Young-Woong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.905-908
    • /
    • 2009
  • 유비쿼터스 컴퓨팅 환경의 발전으로 복합적인 센서들을 이용하여 사용자의 행동을 인식할 수 있는 공간을 설계할 수 있다. 이러한 사용자의 행동을 인식하여 가상 현실(컴퓨터)과의 상호 작용이 가능한 환경을 구축할 수 있다. 본 연구에서는 wii 리모콘에 삽입된 적외선 센서를 이용하여 가상의 3D객체를 실세계에서 효율적으로 상호작용을 할 수 있는 방법에 대하여 제안하고 실험하였다.

A Study on the Vibration of Characteristics of 3-Dimension Submerged Vehicle in Consideration of Fluid-Structure Interaction (유체력을 고려한 3차원 수중압력선체의 진동특성에 관한 연구)

  • 손충렬;황인하;이강수
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.81-88
    • /
    • 2000
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures or ships is possible only when the fluid-structure interaction is understood, as the whole or part of the structure is in contact with water. Specially, the importance of the added mass is not necessary to say like the submerged vehicle, all of the hull body, is positioned in the water. This paper introduce two method to find natural frequency in consideration of fluid-structure modal coupled vibration analysis. The purpose of this study is to analyze of the vibration characteristic of submerged vehicle to obtain the anti-vibration design data, which could be used in the preliminary design stage data. Underwater pressure hull of submerged vehicle is used as the model of this study. The F.E.M model is meshed by shell and beam element. Also, considering of the inner hull weight, mass element is distributed in the direction of hull length. Numerical calculations are accomplished using the commercial B.E.M code. The characteristics of natural frequency(eigenvalues), mode shape(eigenvectors) and frequency-displacement response are analyzed. The results of this study will be used as the useful design data in preliminary anti-vibration design stage.

  • PDF

Three-Dimensional Self-Assembled Micro-Array Using Magnetic Force Interaction

  • Park, Yong-Sung;Kwon, Young-Soo;Eiichi Tamiya;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.5
    • /
    • pp.182-188
    • /
    • 2003
  • We have demonstrated a fluidic technique for self-assembly of microfabricated parts onto substrate using patterned shapes of magnetic force self-assembled monolayers (SAMs). The metal particles and the array were fabricated using the micromachining technique. The metal particles were in a multilayer structure (Au, Ti, and Ni). Sidewalls of patterned Ni dots on the array were covered by thick negative photoresist (SU-8), and the array was magnetized. The array and the particles were mixed in buffer solution, and were arranged by magnetic force interaction. Binding direction of the metal particle onto Ni dots was controlled by multilayer structure and direction of magnetization. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost even with the Au surface on top. The particles were successfully arranged on the array.

Exploring the Determinants of Relationship Quality in Retail Banking Services

  • Kwon, Chul Hwan;Jo, Dong Hyuk;Mariano, Hugo Guimaraes
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3457-3472
    • /
    • 2020
  • The rapid change in the financial market has led to a shift to relationship marketing, which emphasizes relationships with existing customers rather than creating new ones. Therefore, to achieve competitive advantage in the market, assessing service quality and relationship quality has become an important tool for financial institutions. The widely applied five dimension model has shown problems of dimensions overlapping and blurring with each other, which results in the lack in providing the marketer with practical administrative implications. Therefore, a three dimensional model, composed of interaction quality, physical environment quality and outcome quality, that could be applied in general to various service industries and, at the same time, categorized into service quality dimensions that are not ambiguous for marketers to manage has been utilized. As a result, in the case of Korean consumers, interaction quality, physical environment quality, and outcome quality were shown to have positive effects on customer satisfaction and customer loyalty. For Brazilian consumers, physical environment quality and outcome quality were shown to have positive effects on customer satisfaction and customer loyalty. Also, a median effect of customer satisfaction was found. This paper reviews the concept and dimensions of service quality and relationship quality, as well as verifying the structural relationship between the two variables through empirical analysis. Through the results of the analysis, the paper compares the differences between two distinctive countries and present theoretical and academic implications.

Gene-Gene Interaction Analysis for the Accelerated Failure Time Model Using a Unified Model-Based Multifactor Dimensionality Reduction Method

  • Lee, Seungyeoun;Son, Donghee;Yu, Wenbao;Park, Taesung
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.166-172
    • /
    • 2016
  • Although a large number of genetic variants have been identified to be associated with common diseases through genome-wide association studies, there still exits limitations in explaining the missing heritability. One approach to solving this missing heritability problem is to investigate gene-gene interactions, rather than a single-locus approach. For gene-gene interaction analysis, the multifactor dimensionality reduction (MDR) method has been widely applied, since the constructive induction algorithm of MDR efficiently reduces high-order dimensions into one dimension by classifying multi-level genotypes into high- and low-risk groups. The MDR method has been extended to various phenotypes and has been improved to provide a significance test for gene-gene interactions. In this paper, we propose a simple method, called accelerated failure time (AFT) UM-MDR, in which the idea of a unified model-based MDR is extended to the survival phenotype by incorporating AFT-MDR into the classification step. The proposed AFT UM-MDR method is compared with AFT-MDR through simulation studies, and a short discussion is given.

A Distance Education System for Supporting Learners' Interaction (학습자 주도의 상호작용을 지원하는 원격 교육시스템)

  • Jang, Si-Woong;Jeon, Won-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.657-660
    • /
    • 2007
  • With progress of informationalization, education has been transformed from traditional uni-direction education to bi-directional and consumer-oriented education, which is performed by learner's self study and interactive education of multiple dimension between a learner and contents, between a learner and a teacher, and between a learner and a learner irrespective of space-time. According to this trend, a new education method has been required. Therefore, in this paper, we will propose real-time consumer-oriented distance education system of making interaction maximum using WBI. In this system, a learner can participate in an individual study case by multiple interaction with a learner's designing and plaining study, and also participate in group study case by way of discussion and conversation among participants.

  • PDF

Study of Mechanism of Counter-rotating Turbine Increasing Two-Stage Turbine System Efficiency

  • Liu, Yanbin;Zhuge, Weilin;Zheng, Xinqian;Zhang, Yangjun;Zhang, Shuyong;Zhang, Junyue
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.3
    • /
    • pp.160-169
    • /
    • 2013
  • Two-stage turbocharging is an important way to raise engine power density, to realize energy saving and emission reducing. At present, turbine matching of two-stage turbocharger is based on MAP of turbine. The matching method does not take the effect of turbines' interaction into consideration, assuming that flow at high pressure turbine outlet and low pressure turbine inlet is uniform. Actually, there is swirl flow at outlet of high pressure turbine, and the swirl flow will influence performance of low pressure turbine which influencing performance of engine further. Three-dimension models of turbines with two-stage turbocharger were built in this paper. Based on the turbine models, mechanism of swirl flow at high pressure turbine outlet influencing low pressure turbine performance was studied and a two-stage radial counter-rotation turbine system was raised. Mechanisms of the influence of counter-rotation turbine system acting on low-pressure turbine were studied using simulation method. The research result proved that in condition of small turbine flow rate corresponding to engine low-speed working condition, counter-rotation turbine system can effectively decrease the influence of swirl flow at high pressure turbine outlet imposing on low pressure turbine and increases efficiency of the low-pressure turbine, furthermore increases the low-speed performance of the engine.

Numerical simulation of the influence of interaction between Qanat and tunnel on the ground settlement

  • Sarfarazi, Vahab;Tabaroei, Abdollah
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.455-466
    • /
    • 2020
  • This paper presents analysis of the interaction between tunnel and Qanat with a particular interest for the optimization of Qanat shape using the discrete element code, PFC2D, and the results will be compared with the FEM results of PLAXIS2D. For these concerns, using software PFC2D based on Discrete Element Method (DEM), a model with dimension of 100m 100 m was prepared. A circular tunnel with dimension of 9 m was situated 20 m below the ground surface. Also one Qanat was situated perpendicularly above the tunnel roof. Distance between Qanat center and ground surface was 8 m. Five different shapes for Qanat were selected i.e., square, semi-circular, vertical ellipse, circular and horizontal ellipse. Confining pressure of 5 MPa was applied to the model. The vertical displacement of balls situated in ground surface was picked up to measure the ground subsidence. Also two measuring circles were situated at the tunnel roof and at the Qanat roof to check the vertical displacements. The properties of the alluvial soil of Tehran city are: γdry=19 (KN/㎥), E= 750 (kg/㎠), ν=0.35, c=0.3(kg/㎠), φ=34°. In order to validate the DEM results, a comparison between the numerical results (obtained in this study) and analytical and field monitoring have been done. The PFC2D results are compared with the FEM results. The results shows that when Qanat has rectangular shape, the tensile stress concentration at the Qanat corners has maximum value while it has minimum value for vertical ellipse shape. The ground subsidence for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. The vertical displacements at the tunnel roof for Qanat rectangular shape has maximum value while it has minimum value for ellipse shape of Qanat. Historical shape of Qante approved the finding of this research.