• Title/Summary/Keyword: Dilution Fraction

Search Result 97, Processing Time 0.022 seconds

Antimicrobial Activity of Niaouli (Melaleuca quinquenervia) Leaf Extracts against Skin Flora (피부 상재균에 대한 니아울리 잎 추출물의 항균활성)

  • Jang, Ha Na;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.313-320
    • /
    • 2014
  • In this study, the antimicrobial activity of niaouli leaf extracts was evaluated against skin flora. The skin flora used for experiments were three gram-positive bacteria such as Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), Propionibacterium acnes (P. acnes), and two gram-negative, Escherichia coli (E. coli), Pseudomonas aeruginosa( P. aeruginosa), and the yeast, Plasmodium ovale (P. ovale). The bioassay applied for determining the antimicrobial effects of niouli leaf extracts or fraction included the disc diffusion assay and broth dilution assay. Minimum inhibitory concentration (MIC) values of 50% ethanol extract on B. subtilis, S. aureus, P. acnes, E. coli and P. aeruginosa were 0.25%, 0.50%, 1.00%, 0.13% and 0.25% respectively and the MIC values of water fraction were 0.25%, 0.25%, 4,00%, 0.25% and 0.25%. P. ovale did not show antimicrobial activities. The MIC values of methyl paraben used as positive control indicated 0.25%, 0.25%, 0.25%, 0.13% and 0.50%. Also, Minimum bactericidal concentration (MBC) values of 50% ethanol extract were 2.00%, 2.00%, 1.00%, 0.50% and 2.00% individually and the MBC values of water fraction were 0.50%, 0.25%, 4.00%, 0.50% and 1.00%. The MBC values of methyl paraben indicated 1.00%, 0.500%, 0.50%, 0.50% and 1.00%. These results showed that water fraction was as good as methyl paraben except for P. acnes. The 50% ethanol extract also showed activity similar with it. Thus, it is concluded that the 50% ethanol extract/fraction of niaouli could be applicable to cosmetics as a natural preservatives effective in antimicrobial activity against skin flora.

Analysis of Selenium in Grain with ORC Collision-Removal of Br Interference using Mathematical Calibration (ORC ICPMS에서의 곡류중의 셀레늄 분석-수학적 보정을 이용한 Br의 간섭제거)

  • Cho, Heon-Hong;Pak, Yong-Nam
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.472-477
    • /
    • 2011
  • The concentration of selenium in grain samples was determined using isotope dilution method in ORC-ICPMS. The experimental conditions were optimized to $H_2$ mode and the flow rate was $4.0\;mL\;min^{-1}$. ORC in $H_2$ mode proved to eliminate most of polyatomic interferences except $BrH^+$ when Br is present in sample matrix. Chemical removal of Br was very difficult and the mathematical correction was successfully employed. The fraction of $BrH^+$ generated from Br at the current experimental condition was 14.1%. The signal on m/z 82 was corrected and calculated for isotope dilution. The analytical reliability of the propose method was successfully evaluated by analyzing the certified standard reference material NIST SRM 1566 and 1567. The method was applied to real samples and the results are $0.034{\pm}0.001\;{\mu}g\;g^{-1}$ for white rice, $0.059{\pm}0.002_5\;{\mu}g\;g^{-1}$ for brown rice, $0.029{\pm}0.001_4\;{\mu}g\;g^{-1}$ for black rice, and $0.034{\pm}0.002\;{\mu}g \;g^{-1}$ for barley. The detection limits ($3\sigma$) for Se was $0.012\;ng\;g^{-1}$.

Investigation of the pitting corrosion behavior between the constituent phases in F53 super duplex stainless steel in acidified chloride environments (산성 염화물 환경에서 F53 슈퍼 듀플렉스 스테인리스강의 2 상간의 공식 거동 연구)

  • Kim, Soon Tae;Kong, Kyeong Ho;Lee, In Sung;Park, Yong Soo;Lee, Jong Hoon;Kim, Doo Hyun
    • Corrosion Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.95-101
    • /
    • 2014
  • The pitting corrosion behaviors between the constituent phases in F53 super duplex stainless steel (SDSS) in acidified chloride environments were investigated using a critical pitting corrosion temperature test, a potentiodynamic anodic polarization test, and the microstructure analyses through a SEM-EDS and a SAM. As the solution annealing temperature decreased from $1150^{\circ}C$ to $1050^{\circ}C$, the ${\gamma}$-phase fraction increased whereas the ${\alpha}$-phase fraction decreased. The pitting potential and the critical pitting temperature increased with a decrease of solution annealing temperature, thereby increasing the resistance to pitting corrosion. The pitting corrosion of the SDSS was selectively initiated at the ${\alpha}$-phases because the PREN (pitting resistance equivalent number, PREN = %Cr+3.3%Mo+30%N) value of the ${\gamma}$-phase is much larger than that of the ${\alpha}$-phase, irrespective of the solution annealing temperature. The pitting corrosion was finally propagated from the ${\alpha}$-phase to the ${\gamma}$-phase. The decrease of solution annealing temperature enhanced the resistance to pitting corrosion greatly in acidified chloride environments due to a decrease of PREN difference between the ${\gamma}$-phase and the ${\alpha}$-phase, that is, a decrease of $PREN{\gamma}$ by dilution of N in ${\gamma}$-phase with an increase in the ${\gamma}$-phase volume fraction and an increase of $PREN{\alpha}$ by enrichment of Cr and Mo in the ${\alpha}$-phase with a decrease in the ${\alpha}$-phase volume fraction.

A Study on Reductions of Cold Start Emissions with Syngas Assist in an SI Engine (합성가스를 첨가한 SI 엔진의 냉간시동 유해 배기가스 저감에 관한 연구)

  • Song, Chun-Sub;Ka, Jae-Geum;Hong, Woo-Kyung;Park, Jeoung-Kwon;Cho, Yong-Seok;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.114-120
    • /
    • 2011
  • Fuel reforming technology for the fuel cell vehicles has been frequently applied to internal combustion engine for the reduction of engine out emissions. Since syngas which is reformed from fossil fuel has hydrogen as a major component, it has abilities to enhance the combustion characteristics with wide flammability and high speed flame propagation. In this paper, syngas was feed to a 2.0 liter SI engine with MPI to improve exhaust emissions under cold start and early state of idle condition. Syngas fraction is varied to 0%, 10%, 25%, with various ignition timings. Exhaust emission characteristics and the exhaust system temperature were measured to investigate the effects of syngas addition on cold start. Result showed that HC emission could be dramatically reduced due to the fact that syngas has $H_2$ and no HC as components. The amount of $NO_x$ emission was decreased with the increase of syngas fraction. Because the dilution effect of $N_2$ and the retard of ignition timing reduces the peak combustion temperature inside the cylinder. Exhaust gas temperature was lower than that of gasoline feeding condition. Retarded ignition timing, however, resulted in increased exhaust gas temperature approximated to gasoline condition. It is supposed that the usage of syngas in an SI engine is an effective solution to meet the future strict emission regulations.

Anti-Helicobacter pylori Compounds from Maackia amurensis

  • Park, Woo Sung;Bae, Ji-Yeong;Kim, Hye Jin;Kim, Min Gab;Lee, Woo-Kon;Kang, Hyung-Lyun;Baik, Seung-Chul;Lim, Kyung Mook;Lee, Mi Kyeong;Ahn, Mi-Jeong
    • Natural Product Sciences
    • /
    • v.21 no.1
    • /
    • pp.49-53
    • /
    • 2015
  • Eight isoflavonoid compounds were isolated from the EtOAc fraction of Maackia amurensis which had shown the highest anti-Helicobacter pylori activity among the fractions, using medium pressure liquid chromatography and recrystallization. Based on the spectroscopic data including $^1H$-NMR, $^{13}C$-NMR, HMBC and MS data, the chemical structures of the isolates were determined to be (-)-medicarpin (1), afromosin (2), formononetin (3), tectorigenin (4), prunetin (5), wistin (6), tectoridin (7) and ononin (8). Anti-H. pylori activity of each compound was evaluated with broth dilution assay. As a result, (-)-medicarpin (1), tectorigenin (4) and wistin (6) showed anti-H. pylori activity. (-)-Medicarpin (1) exhibited the most potent growth inhibitory activity against H. pylori with the minimal inhibitory concentration $(MIC)_{90}$ of $25{\mu}M$, and tectorigenin (4) with $MIC_{90}$ of $100{\mu}M$ ranked the second. This is the first study to show the anti-H. pylori activity of M. amurensis, and it is suggested that the stem bark of M. amurensis or the EtOAc fraction or the isolated compounds can be a new natural source for the treatment of H. pylori infection.

Antifungal and Antioxidative Activities of Yucca smallina Fern

  • Jin, Yu-Lan;Jung, Woo-Jin;Kuk, Ju-Hee;Kim, Jung-Bong;Kim, Kil-Yong;Park, Ro-Dong
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.165-170
    • /
    • 2006
  • The antifungal activity of crude methanolic extract and fractions from Yucca smalliana Fern. leaves, roots and flowers were investigated in vitro against a panel of plant pathogenic fungi. The minimal inhibitory concentration(MIC) was determined by an agar dilution method. Preliminary liquid culture and agar plate assays showed that the growth of Fu sarium oxysporum, Phytophthora capsici, Rhizoctonia solani and Botrytis cinerea were inhibited by Y. smalliana extracts. The extracts from flowers and leaves showed antifungal activity of 64.0% and 34.0% against F. oxysporum, 66.0% and 62.0% against P. capsici, and 27.0% and 41.0% against B. cinerea, respectively. The methanolic extract from Y. smallina leaves in distilled water was fractionated using solvents of increasing polarity: hexane, ethyl acetate and butanol. These fractions had a broad spectrum of antifungal activity, found to reside entirely in the butanol and aqueous fraction. The aqueous fraction showed inhibition rate of 60.0, 67.8, 84.6 and 58.3% against F. oxysporum, R. solani, C. gloeosporioides, and B. cinerea, respectively, and the butganol fracgtion showed 36.0, 46.0, 66.1 and 58.3%, respectively. Phenolics(e.g. flavonoids, steroids and terpenoids) were observed in the thin layer profile of the different fractions. Leave extract showed a prominent antioxidant activity totally scavenging the free radical of DPPH at a concentration of 1 mg/ml.

Variation in the Nanostructural Features of the nc-Si:H Thin Films with Substrate Temperature (수소화된 나노결정 실리콘 박막의 기판온도에 따른 나노구조 변화)

  • Nam, Hee-Jong;Son, Jong-Ick;Cho, Nam-Hee
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.359-365
    • /
    • 2013
  • We investigated the nanostructural, chemical and optical properties of nc-Si:H films according to deposition conditions. Plasma enhanced chemical vapor deposition(PECVD) techniques were used to produce nc-Si:H thin films. The hydrogen dilution ratio in the precursors, [$SiH_4/H_2$], was fixed at 0.03; the substrate temperature was varied from room temperature to $600^{\circ}C$. By raising the substrates temperature up to $400^{\circ}C$, the nanocrystalite size was increased from ~2 to ~7 nm and the Si crystal volume fraction was varied from ~9 to ~45% to reach their maximum values. In high-resolution transmission electron microscopy(HRTEM) images, Si nanocrystallites were observed and the crystallite size appeared to correspond to the crystal size values obtained by X-ray diffraction(XRD) and Raman Spectroscopy. The intensity of high-resolution electron energy loss spectroscopy(EELS) peaks at ~99.9 eV(Si $L_{2,3}$ edge) was sensitively varied depending on the formation of Si nanocrystallites in the films. With increasing substrate temperatures, from room temperature to $600^{\circ}C$, the optical band gap of the nc-Si:H films was decreased from 2.4 to 1.9 eV, and the relative fraction of Si-H bonds in the films was increased from 19.9 to 32.9%. The variation in the nanostructural as well as chemical features of the films with substrate temperature appears to be well related to the results of the differential scanning calorimeter measurements, in which heat-absorption started at a substrate temperature of $180^{\circ}C$ and the maximum peak was observed at ${\sim}370^{\circ}C$.

Lean Operation Characteristics of a Spark Ignition Engine with Reformed Gas Addition (전기점화 엔진에서 개질가스 첨가에 의한 희박연소특성 연구)

  • Oh, Seung-Mook;Kim, Chang-Up;Kang, Kern-Yong;Choi, Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.170-177
    • /
    • 2006
  • Hydrogen can extend the lean misfire limit to a large extent when it is mixed with conventional fuels for a spark ignition engine. In this study, hydrogen-enriched gaseous fuels by reforming process were simulated according to their proportions of $H_2$, CO, $CO_2$ and $N_2$ gases. Pure hydrogen and two different hydrogen-enriched gaseous mixtures(A-, B-composition) were tested for their basic effects on the engine performances and emissions in a single cylinder research engine. A- and B-composition showed different results from 100% $H_2$ addition because air/fuel mixtures were more diluted by their additions. Even though the energy fraction of reformed gases was increased, combustion stabilities and lean misfire limits were not sensitively improved. It means that combustion augmentation by $H_2$ addition was offset by the charge dilution of $N_2$ and $CO_2$. In addition, the low flammability of CO gas deteriorated thermal efficiencies. CO emission was drastically increased with B-composition which included higher CO component. However, $NO_x$ was reduced as energy fraction($X_e$) rised except for the case of 100% $H_2$ addition at $\lambda=1.2$ and was, for A-composition, lowered to a factor of ten when compared with that of $H_2$ addition. HC emissions were largely influenced by $COV_{imep}$ due to misfire and partial burns.

A New Stilbene Dimer and Other Chemical Constituents from Monanthotaxis littoralis with Their Antimicrobial Activities

  • Dongmo, Arnaud Joseph Nguetse;Ekom, Steve Endeguele;Tamokou, Jean-de-Dieu;Tagousop, Cyrille Ngoufack;Harakat, Dominique;Voutquenne-Nazabadioko, Laurence;Ngnokam, David
    • Natural Product Sciences
    • /
    • v.26 no.4
    • /
    • pp.317-325
    • /
    • 2020
  • A new dimer stilbene [Monalittorin (1)] and ten known compounds [engeletin (2), aurantiamide acetate (3), lupeol (4), friedelin (5), quercetin (6), tiliroside (7), rutoside (8), astragalin (9), isoquercitrin (10) and quercimeritroside (11)] have been isolated from the leaves of Monanthotaxis littoralis (Annonaceae). The structures of these compounds were established by interpretation of their data, mainly, HR-TOFESIMS, 1-D NMR (1H and 13C) and 2-D NMR (1H-1H COSY, HSQC, HMBC and NOESY) and by comparison with the literature. The evaluation of their antimicrobial activities against three bacteria (Staphylococcus aureus ATCC 25923, Escherichia coli S2 (1) and Pseudomonas aeruginosa PA01) and three fungal strains (Candida albicans ATCC10231, Candida tropicalis PK233 and Cryptococcus neoformans H99) using broth micro dilution method, showed the largest antimicrobial activities of EtOAc fraction and compounds 1, 5, 6, 8 and 11 (MIC = 8 - 64 ㎍/mL). In addition, EtOAc fraction presented synergistic effect with Vancomycin and fluconazole against the tested microorganisms.

Soot Concentration and Temperature Measurements in Laminar Ethylene Jet Double-concentric Diffusion Flames (동축 이중 에틸렌 확산화염의 매연 농도분포 및 온도 측정)

  • Lee, Gyo-U;Jeong, Jong-Su;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.402-409
    • /
    • 2002
  • Experiments were performed with double-concentric diffusion flame(DDF) in order to investigate the characteristics of soot formation and temperature distributions. The flame size and shape of the DDF are similar to those of the well-known normal co-flow diffusion flame(WF), except the formation of a tiny inverse flame near the central tube exit. A laser light extinction technique was used to measure the soot volume fractions. The temperature distributions in the flame were measured by rapid insertion of a R-type thermocouple. Soot concentrations along the flame axis of the DDF were higher than those of the NDF. However, the maximum soot volume fraction of the DDF along the periphery of the flame was lower than that of the NDF. It is mainly due to the effect of nitrogen-dilution from the inner air. Measured temperature distribution explains these trends of soot concentration. The temperature along the flame axis was also higher in DDF than that of the NDF. However, the flame temperatures at the flame front of the two flames were almost same regardless of the inner flame. This phenomenon means that the inverse flame inside the DDF did not affect on the flame structure including the temperature and soot concentration, except the region around the flame axis.