• 제목/요약/키워드: Dihydroflavonol 4-reductase

검색결과 13건 처리시간 0.016초

Marker-assisted Genotype Analysis of Bulb Colors in Segregating Populations of Onions (Allium cepa)

  • Kim, Sunggil;Bang, Haejeen;Yoo, Kil-Sun;Pike, Leonard M.
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.192-197
    • /
    • 2007
  • Bulb color in onions (Allium cepa) is an important trait whose complex inheritance mechanism involves epistatic interactions among major color-related loci. Recent studies revealed that inactivation of dihydroflavonol 4-reductase (DFR) in the anthocyanin synthesis pathway was responsible for the color differences between yellow and red onions, and two recessive alleles of the anthocyanidin synthase (ANS) gene were responsible for a pink bulb color. Based on mutations in the recessive alleles of these two genes, PCR-based markers for allelic selection were developed. In this study, genotype analysis of onions from segregating populations was carried out using these PCR-based markers. Segregating populations were derived from the cross between yellow and red onions. Five yellow and thirteen pink bulbs from one segregating breeding line were genotyped for the two genes. Four pink bulbs were heterozygous for the DFR gene, which explains the continuous segregation of yellow and pink colors in this line. Most pink onions were homozygous recessive for the ANS gene, except for two heterozygotes. This finding indicated that the homozygous recessive ANS gene was primarily responsible for the pink color in this line. The two pink onions, heterozygous for the ANS gene, were also heterozygous for the DFR gene, which indicated that the pink color was produced by incomplete dominance of a red color gene over that of yellow. One pink line and six other segregating breeding lines were also analyzed. The genotyping results matched perfectly with phenotypic color segregation.

Development of Functional Markers for Detection of Inactive DFR-A Alleles Responsible for Failure of Anthocyanin Production in Onions (Allium cepa L.)

  • Park, Jaehyuk;Cho, Dong Youn;Moon, Jin Seong;Yoon, Moo-Kyoung;Kim, Sunggil
    • 원예과학기술지
    • /
    • 제31권1호
    • /
    • pp.72-79
    • /
    • 2013
  • Inactivation of the gene coding for dihydroflavonol 4-reductase (DFR) is responsible for the color difference between red and yellow onions (Allium cepa L.). Two inactive DFR-A alleles, DFR-$A^{PS}$ and DFR-$A^{DEL}$, were identified in our previous study. A functional marker was developed on the basis of the premature stop codon that inactivated the DFR-$A^{PS}$ allele. A derived cleaved amplified polymorphic sequences (dCAPS) primer was designed to detect the single nucleotide polymorphism, an A/T transition, which produced the premature stop codon. Digested PCR products clearly distinguished the homozygous and heterozygous red $F_2$ individuals. Meanwhile, to develop a molecular marker for detection of the DFR-$A^{DEL}$ allele in which entire DFR-A gene was deleted, genome walking was performed and approximately 3 kb 5' and 3' flanking sequences of the DFR-$A^R$ coding region were obtained. PCR amplification using multiple primers binding to the extended flanking regions showed that more of the extended region of the DFR-A gene was deleted in the DFR-$A^{DEL}$ allele. A dominant simple PCR marker was developed to identify the DFR-$A^{DEL}$ allele using the dissimilar 3' flanking sequences of the DFR-A gene and homologous DFR-B pseudogene. Distribution of the DFR-$A^{PS}$ and DFR-$A^{DEL}$ alleles in yellow onion cultivars bred in Korea and Japan was surveyed using molecular makers developed in this study. Results showed predominant existence of the DFR-$A^{PS}$ allele in yellow onion cultivars.

STS-RFLP법을 이용한 국내지역 재배녹차의 비교분석 (Comparative Analysis of Local Green Tea in Korea by STS-RFLP)

  • 조규형;조아르나;;김종철;김루미;윤호성;김경태
    • 생명과학회지
    • /
    • 제20권9호
    • /
    • pp.1415-1419
    • /
    • 2010
  • 최근 웰빙 열풍으로 나날이 녹차에 대한 관심과 소비가 증가하고, 생산 재배되고 있는 산지에 대한 브랜드화가 진행되고 있다. 하지만 지역에서 재배되고 있는 녹차품종의 구별 및 차이에 대해서는 아직 많은 연구가 되어 있지 않고 있다. 이 연구에서 국내 대표 녹차산지인 하동지역과 보성지역에서 채집한 녹차와 중국과 일본의 대표적 녹차품종을 가지고 STS-RFLP분석을 수행하였다. 페닐프로파노이드 생합성 경로에 관여하는 페닐알라닌 암모니아 리아제와 찰콘 합성효소 그리고 디하이드로플라보놀 4-리덕타아제 유전자의 암호영역과 비암호영역을 사용하여 이들 품종들을 구별할 수 있는 연구에 성공하였다. 이 논문에서는 녹차품종 구별에 사용 가능한 STS-RFLP법과 프라이머를 나타내었고, 하동지역과 보성지역의 녹차품종을 CHS 유전자의 CAPS 마커만으로 구별할 수 있는 방법을 찾아내어, 국내 지역간 품종의 구분 및 검증에 사용할 수 있다는 사실을 제시하였다.