• Title/Summary/Keyword: Digital sensor

Search Result 1,577, Processing Time 0.03 seconds

Implementation of Digital Twin based Building Control System using Wireless Sensor Box

  • Shin, Sang-Hoon;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.57-64
    • /
    • 2020
  • In this paper, based on the building's 3D modeling, a digital twin-based building control system using the collection information of wireless sensor box is proposed. The proposed system applies wireless sensors, making sensor modules more expandable and usable, and more intuitive building control possible through three-dimensional modeling. In addition, effective control and visual representation are possible through BIM data. Sensor boxes have been designed for general purpose so that a variety of sensor modules can be added and have been implemented for actual university buildings to demonstrate high availability. The results of this paper could be used to implement a digital twin control platform in the future.

Development of Digital Surface Model and Feature Extraction by Integrating Laser Scanner and CCD sensor

  • Nagai, Masahiko;Shibasaki, Ryosuke;Zhao, Huijing;Manandhar, Dinesh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.859-861
    • /
    • 2003
  • In order to present a space in details, it is indispensable to acquire 3D shape and texture simultaneously from the same platform. 3D shape is acquired by Laser Scanner as point cloud data, and texture is acquired by CCD sensor. Positioning data is acquired by IMU (Inertial Measurement Unit). All the sensors and equipments are assembled on a hand-trolley. In this research, a method of integrating the 3D shape and texture for automated construction of Digital Surface Model is developed. This Digital Surface Model is applied for efficient feature extraction. More detailed extraction is possible , because 3D Digital Surface Model has both 3D shape and texture information.

  • PDF

Digital Control of an Electromagnetic Levitation System (자기부상 시스템의 디지털 제어)

  • 이승욱;이건복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2312-2321
    • /
    • 1994
  • In this work the dynamics of an electromagnetic levitation system is described by a set of three first order nonlinear ordinary differential equations. The objective is to design a digital linear controller which takes the inherent instability of the uncontrolled system and the disturbing force into consideration. The controller is made by employing digital linear quadratic(LQ) design methodology and the unknown state variables are estimated by the kalman filter. The state estimation is performed using not only an air gap sensor but also both an air gap sensor and a piezoelectric accelerometer. The design scheme resulted in a digital linear controller having good stability and performance robustness in spite of various modelling errors. In case of using both a gap sensor and an accelerometer for the state estimation, the control input was rather stable than that in a system with gap sensor only and the controller dealt with the disturbing force more effectively.

ANALYSIS OF THE IMAGE SENSOR CONTROL METHOD

  • Park, Jong-Euk;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Yong, Sang-Soon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.464-467
    • /
    • 2007
  • All image data acquisition systems for example the digital camera and digital camcorder, use the image sensor to convert the image data (light) into electronic data. These image sensors are used in satellite camera for high quality and resolution image data. There are two kinds of image sensors, the one is the CCD (charge coupled device) detector sensor and the other is the CMOS (complementary metal-oxide semiconductor) image sensor. The CCD sensor control system has more complex than the CMOS sensor control system. For the high quality image data on CCD sensor, the precise timing control signal and the several voltage sources are needed in the control system. In this paper, the comparison of the CCD with CMOS sensor, the CCD sensor characteristic, and the control system will be described.

  • PDF

Development of a Digital Device for Measuring Soil Physical Properties (I) - Digital Shear Stress Sensor - (토양 물리성 측정을 위한 디지털 장치 개발(I) - 디지털 전단저항 측정장치 -)

  • Park, Jun-Gul;Lee, Kyou-Seung;Cho, Seung-Chan;Lee, Dong-Hoon;Chang, Young-Chang;Noh, Kwang-Mo
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.416-422
    • /
    • 2008
  • This study was performed to design and construct a digital soil shear stress sensor in order to replace the conventional devices for measuring soil shear property. The developed digital shear stress measuring device can store measured data with GPS position information as a vector format into a computer. Based on the experiments at various field conditions, the measuring characteristic of the device was quite similar to that of a conventional device, SR-2 that has been a major tool to measure the soil shear property. It was concluded that the digital shear stress measuring device was an effective and comprehensive sensor for measuring soil shear property.

A Study on Uncertainty Quantification and Performance Confidence Interval Estimation for Application to Digital Twin of Oscillating Water Column Type Wave Power Generator System (진동수주형 파력발전 시스템의 디지털 트윈 적용을 위한 불확실성 정량화 및 성능 신뢰구간 추정 연구)

  • Tae-Kyun Kim;Su-Gil Cho;Jae-Won Oh;Tae-Hee Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.401-409
    • /
    • 2023
  • Oscillating water column (OWC) type wave power generator system is a power generation system that uses wave energy, a sustainable and renewable energy source. Irregular cycles and wave heights act as factors that make it difficult to secure generation efficiency of the wave power generator system. Recently, research for improving power generation efficiency is being conducted by applying digital twin technology to OWC type wave energy converter system. However, digital twin using sensor data can predict erroneous performance due to uncertainty in the sensor data. Therefore, this study proposes an uncertainty analysis method for sensor data which is used in digital twin to secure the reliability of digital twin prediction results. Uncertainty quantification considering sensor data characteristics and future uncertainty information according to uncertainty propagation were derived mathematically, and confidence interval estimation was performed based on the proposed method.

Implementation of a Thermal Imaging System with Focal Plane Array Typed Sensor (초점면 배열 방식의 열상카메라 시스템의 구현)

  • 박세화;원동혁;오세중;윤대섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.396-403
    • /
    • 2000
  • A thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main part of the system is a thermal camera in which a focal plane array typed sensor is introduced. The sensor detects the mid-range infrared spectrum of target objects and then it outputs a generic video signal which should be processed to form a frame thermal image. Here, a digital signal processor(DSP) is applied for the high speed processing of the sensor signals. The DSP controls analog-to-digital converter, performs correction algorithms and outputs the frame thermal data to frame buffers. With the frame buffers can be generated a NTSC signal and transferred the frame data to personal computer(PC) for the analysis and a monitoring of the thermal scenes. By performing the signal processing functions in the DSP the overall system achieves a simple configuration. Several experimental results indicate the performance of the overall system.

  • PDF

Design of an Acoustic band Interpolator for Underwater Sensor Nodes (수중 센서 노드를 위한 음파 대역 인터폴레이터 설계)

  • Kim, Sunhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.93-98
    • /
    • 2020
  • Research on underwater sensor networks is increasing due to such reasons as marine resource management, maritime disaster prediction and military protection. Many underwater sensor networks performs wireless communication using an acoustic sound wave band signal having a relatively low frequency. So the digital part of their modem can take charge of carrier band signal processing. To enable this, the sampling rate of the baseband band signal should be increased to a sampling rate at which carrier band signal processing is possible. In this paper, we designed a sampling rate increasing circuit based on a CIC interpolator for underwater sensor nodes. The CIC interpolator has a simple circuit structure. However, since the CIC interpolator has a large attenuation of the pass band and a wide transition band, an inverse sinc LPF is added to compensate for frequency response of the CIC interpolator. The proposed interpolator was verified in time domain and frequency domain using ModelSim and Matlab.

A 2.5V 0.25㎛ CMOS Temperature Sensor with 4-bit SA ADC (4-비트 축차근사형 아날로그-디지털 변환기를 내장한 2.5V 0.25㎛ CMOS 온도 센서)

  • Kim, Mungyu;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.378-384
    • /
    • 2013
  • In this paper, a CMOS temperature sensor is proposed to measure the internal temperature of a chip. The temperature sensor consists of a proportional-to-absolute-temperature (PTAT) circuit for a temperature sensing part and a 4-bit analog-to-digital converter (ADC) for a digital interface. The PTAT circuit with the compact area is designed by using a vertical PNP architecture in the CMOS process. To reduce sensitivity of temperature variation in the digital interface circuit of the proposed temperature sensor, a 4-bit successive approximation (SA) ADC using the minimum analog circuits is used. It uses a capacitor-based digital-to-analog converter and a time-domain comparator to minimize power consumption. The proposed temperature sensor was fabricated by using a $0.25{\mu}m$ 1-poly 6-metal CMOS process with a 2.5V supply, and its operating temperature range is from 50 to $150^{\circ}C$. The area and power consumption of the fabricated temperature sensor are $130{\times}390{\mu}m^2$ and $868{\mu}W$, respectively.

Fabrication of carbon nanotube gas sensor using a diaphragm structure (다이아프램 구조를 이용한 탄소나노튜브 가스 센서의 제작)

  • Kim, Sung-Woon;Han, Chun-Jae;Cho, Woo-Sung;Ju, Byeong-Kwon;Cho, Hyun-Seob;Kim, Young-Cho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.223-226
    • /
    • 2006
  • The micro-gas sensor based on carbon nanotubes (CNTs) was fabricated and its gas sensing characteristics on nitrogen dioxide ($NO_2$) have been investigated. The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to $NO_2$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of $130^{\circ}C$.

  • PDF