• Title/Summary/Keyword: Digital phase-shifter

Search Result 37, Processing Time 0.024 seconds

Performance Analysis of digital phase shifter using Hilbert transform (힐버트 변환을 이용한 디지털 위상천이기의 성능 분석)

  • Seo, Sang Gyu;Jeong, Bong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • In this paper digital phase-shifter for multi-arm spiral antennas was designed by using Hilbert transform. All frequency components in input signal are phase-shifted for 90 degree by Hilbert transform, and the transform is implemented by FIT and IFIT. Digital phase-shifter generates two signals with phase difference of 90 degree by using Hilbert transform from input signals sampled by analog-digital converter(ADC), and then the input signal is phase-shifted for a given phase by using two signals. Hilbert transform based on digital phase-shifter is designed by Xilinx System generator, and the effects of input noise, FIT point, sampling period, initial phase of input signal, and shifted phase are simulated and its results are compared with Matlab results.

Design of the Broad Band Phase Shifter for DTV Receiver (DTV(Digital TV) 수신 모듈용 광대역 가변 위상기의 설계)

  • 한기진;김종필;나형기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.296-303
    • /
    • 2003
  • In this paper, a design method is proposed for the reflection type phase shifter applied to the DTV(Digital TV) receiver, and a phase shifter is designed by using the design equations to satisfy the phase shifting range over 180 degrees for frequency range from 470 MHz to 860 MHz, the receiving band of DTV. From the proposed method, it is possible that the systematic design of the reflection type phase shifter with desired phase shifting range and insertion loss. In addition, it is found that the realized phase shifter satisfies the given specifications.

X-band Compact Digital Phase Shifter Design (X 대역 소형 디지털 위상 천이기 설계)

  • 엄순영;전순익;육종관;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.907-915
    • /
    • 2002
  • In this paper, a compact digital phase shifter to be used an active phased array antenna system for satellite communications was proposed. The even and odd mode analysis for a given reflection-type phase shifter, which uses a folded hybrid coupler as a base element, was performed and the design parameters were derived. Also, to verify experimentally the electrical performances of the proposed structure, X-band 4-bit digital phase shifter was designed and fabricated using Teflon soft substrate $({\varepsilon}_r; =\;2.17)$. Its circuit size was less than 3.5 cm $\times$ 3.0 cm, and it exhibited at least 50 % size reduction as compared with the conventional unfolded configuration. The experimental results of the fabricated phase shifter showed that the average insertion loss and insertion loss variation were less than 3.5 dB, $\pm$ 0.6 dB within the operating band, 7.9 ~ 8.4 GHz, respectively. And, input and output return loss were more than 10 dB, respectively. Also, the phase response of the phase shifter showed 4-bit operation with $\pm$3$^{\circ}$ rms phase error.

A Ku-Band 5-Bit Phase Shifter Using Compensation Resistors for Reducing the Insertion Loss Variation

  • Chang, Woo-Jin;Lee, Kyung-Ho
    • ETRI Journal
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2003
  • This paper describes the performance of a Ku-band 5-bit monolithic phase shifter with metal semiconductor field effect transistor (MESFET) switches and the implementation of a ceramic packaged phase shifter for phase array antennas. Using compensation resistors reduced the insertion loss variation of the phase shifter. Measurement of the 5-bit phase shifter with a monolithic microwave integrated circuit demonstrated a phase error of less than $7.5{\circ}$ root-mean-square (RMS) and an insertion loss variation of less than 0.9 dB RMS for 13 to 15 GHz. For all 32 states of the developed 5-bit phase shifter, the insertion losses were $8.2{\pm}1.4$dB, the input return losses were higher than 7.7 dB, and the output return losses were higher than 6.8 dB for 13 to 15 GHz. The chip size of the 5- bit monolithic phase shifter with a digital circuit for controlling all five bits was 2.35 mm ${\times}$1.65 mm. The packaged phase shifter demonstrated a phase error of less than $11.3{\circ}$ RMS, measured insertion losses of 12.2 ${\pm}$2.2 dB, and an insertion loss variation of 1.0 dB RMS for 13 to 15 GHz. For all 32 states, the input return losses were higher than 5.0 dB and the output return losses were higher than 6.2 dB for 13 to 15 GHz. The size of the packaged phase shifter was 7.20 mm${\times}$ 6.20 mm.

  • PDF

2-6 GHz Digital Phase Shifter Module (2-6 GHz 디지털 위상변위기 모듈)

  • Jeong, Myeong-Deuk;So, Jun-Ho;U, Byeong-Il;Im, Jung-Su;Lee, Sang-Won;Park, Dong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.3
    • /
    • pp.158-164
    • /
    • 2002
  • 2-6 GHz digital phase shifter module has been designed and fabricated. For the broadband operation and performance, MMIC phase shifter chip for phase shifter module was designed and fabricated by using the reflection-type circuits with Lange coupler. The fabricated phase shifter module shows 6.1$^{\circ}$RMS phase error, 13.5 dB maximum insertion loss, and 8 dB and 10 dB input and output return losses, respectively. Computer controlled measurement systems are realized in order to get the measured data of 32 phase states. The RMS insertion phase error and the average insertion loss deviation among 8${\times}$8 modules for the phased-array system are less than ${\pm}$0.5$^{\circ}$and ${\pm}$0.5 dB, respectively. The size of fabricated phase shifter module is 45 ${\times}$ 22.5 ${\times}$60㎣.

Design and Implementation of a Ku-band Packaged 5-bit Phase Shiner (패키지된 KU-밴드용 5-비트 위상변위기 설계 및 제작)

  • 장우진;형창희;이희태;이경호;송민규
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.21-24
    • /
    • 2000
  • This paper introduces the design and implementation of a Ku-band 5-bit monolithic phase shifter with a ceramic package. The 5-bit phase shifter MMIC was designed and fabricated by using GaAs MESFET switches. The packaged phase shifter demonstrates a phase error less than 11.3 $^{\circ}$ RMS and an insertion loss variation less than 1.0㏈ RMS for 13∼15㎓. For all 32 states, an insertion loss is measured to be 12.2${\pm}$2.2㏈, an input return loss more than 5.0㏈, and an output return loss more than 6.2㏈ from 13㎓ to 15㎓. The chip size of the 5-bit phase shifter MMIC is 2.35${\times}$1.65mm$\^$2/ including digital control circuits. The size of the ceramic packaged phase shifter is 7.2${\times}$6.2mm$\^$2/.

  • PDF

Development of a New Active Phase Shifter

  • Kim, S.J.;N.H. Myung
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1063-1066
    • /
    • 2000
  • ln this paper, a new active phase shifter is proposed using a vector sum method, and it is shown that the proposed phase shifter is more efficient than the others in size, power, number of circuits, and gain. Also a unique digital phase control method of the circuit is suggested. The proposed scheme was designed and implemented using a Wilkinson power combiner/divider, a branch line 3dB quadrature hybrid coupler and variable gain amplifiers (VGAs) using dual gate FETs (DGFETs). Furthermore, it is also shown that the proposed scheme is more efficient and works properly with the digital phase control method.

  • PDF

A Study on the Vehicle Digital Broadcasting System of Active Electronic Control Method using Phase Shifter (위상변위기를 이용한 능동전자제어방식의 차량용 디지털 위성방송 시스템에 관한 연구)

  • 김기열;이상호;박종국
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.7
    • /
    • pp.903-908
    • /
    • 1999
  • In this paper, it is proposed the phase shifter array active system to receive digital satellite broadcasting for vehicle. To receive satellite broadcasting data in vehicle, it is inevitable to have active antenna system, which traces the satellite in real time. Also if it is used in vehicle, it must be thin and light structure. To develop this type of antenna system, several techniques should be integrated properly. These are the design and manufacturing technique of high gain antenna, algorithm for tracking satellite and its manufacturing technique, controller design and manufacturing technique, system integration technique and so on. The validity of the proposed AVDBS system was confirmed by simulation and experimental results.

  • PDF

Reflection-Type 5-bit Digital Phase Shifter with Constant Insertion Loss (균일 삽입 손실 특성을 갖는 반사형의 5-비트 디지털 위상 변위기)

  • 고경석;최익권
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.582-589
    • /
    • 2002
  • This paper presents 12.2 GHz ~ 12.7 GHz frequency band reflection type 5-bit digital phase shifter with constant insertion loss property that was fabricated with relatively low cost's InGaAs HEMT for amplifier. The unavoidable large insertion loss difference between on and off states of HEMT, when it is designed by conventional design theory based on ideal switching device, is removed by transforming the HEMT impedances at on and off states to other proper values connecting a certain length transmission line to HEMT and then applying the conventional design theory. The fabricated 5-bit digital phase shifter shows very good insertion loss properties of less than 1.5 dB insertion loss difference and -4.5 dB ~ -6 dB insertion loss in 35 phase steps at 12.2 GHz ~ 12.7 GHz. These results verify the design method presented in this paper, which is useful to design phase shifter of constant insertion loss with non-ideal switching device.

A 60GHz Active Phase Shifter with 65nm CMOS Switching-Amplifiers (65nm CMOS 스위칭-증폭기를 이용한 60GHz 능동위상변화기 설계)

  • Choi, Seung-Ho;Lee, Kook-Joo;Choi, Jung-Han;Kim, Moon-Il
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.232-235
    • /
    • 2010
  • A 60GHz active phase shifter with 65nm CMOS is presented by replacing passive switches in switched-line type phase shifter with active ones. Active-switch phase shifter is composed of active-switch blocks and passive delay network blocks. The active-switch phase shifter design is compact compare with the conventional vector-sum phase shifter. Active-switch blocks are designed to accomplish required input and output impedances whose requirements are different whether the switch is on or off. And passive delay network blocks are composed of lumped L,C instead of normal microstrip line to reduce the size of the circuit. An 1-bit phase shifter is fabricated by TSMC 65nm CMOS technology and measurement results present -4dB average insertion loss and 120 degree phase shift at 65GHz.