• Title/Summary/Keyword: Digital hybrid visualization

Search Result 3, Processing Time 0.017 seconds

Lymphovenous anastomoses with three-dimensional digital hybrid visualization: improving ergonomics for supermicrosurgery in lymphedema

  • Will, Patrick A.;Hirche, Christoph;Berner, Juan Enrique;Kneser, Ulrich;Gazyakan, Emre
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.427-432
    • /
    • 2021
  • The conventional approach of looking down a microscope to perform microsurgical procedures is associated with occupational injuries, anti-ergonomic postures, and increased tremor and fatigue, all of which predispose microsurgeons to early retirement. Recently, three-dimensional (3D) visualization of real-time microscope magnification has been developed as an alternative. Despite its commercial availability, no supermicrosurgical procedures have been reported using this technology to date. Lymphovenous anastomoses (LVAs) often require suturing vessels with diameters of 0.2-0.8 mm, thus representing the ultimate microsurgical challenge. After performing the first documented LVA procedure using 3D-augmented visualization in our unit and gaining experience with this technique, we conducted an anonymized in-house survey among microsurgeons who had used this approach. The participants considered that 3D visualization for supermicrosurgery was equivalent in terms of handling, optical detail, depth resolution, and safety to conventional binocular magnification. This survey revealed that team communication, resident education, and ergonomics were superior using 3D digital hybrid visualization. Postoperative muscle fatigue, tremor, and pain were also reduced. The major drawbacks of the 3D visualization microscopic systems are the associated costs, required space, and difficulty of visualizing the lymphatic contrast used.

A Hybrid Technique for Fire Animation (불의 애니메이션을 위한 복합적 기법)

  • Min, Kyung-Ha
    • Journal of Korea Game Society
    • /
    • v.7 no.3
    • /
    • pp.77-88
    • /
    • 2007
  • In this paper, we present a new fire animation and visualization scheme. The most difficult problem in creating fire animation is how to simulate the mechanism of emitting lighting and heat of fire. We attack the difficulty by presenting a hybrid scheme that combines the simulation scheme and the combustion process in voxelized space where the numerical solution of the classical fluid equations is implemented. Therefore, the combustion process is simulated at each voxel and the amount of heat generated at the voxel is estimated. The generated heat will increase the temperature at the voxel, where results in the increase of turbulent motion of fire. We also propose a visualization scheme that modifies the photon mapping algorithm in order to render fire and various lighting effects of fire to the environments.

  • PDF

Kansas Vegetation Mapping Using Multi-Temporal Remote Sensing Data: A Hybrid Approach (계절별 위성자료를 이용한 미국 캔자스주 식생 분류 - 하이브리드 접근방식의 적용 -)

  • ;Stephen Egbert;Dana Peterson;Aimee Stewart;Chris Lauver;Kevin Price;Clayton Blodgett;Jack Cully, Jr,;Glennis Kaufman
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.5
    • /
    • pp.667-685
    • /
    • 2003
  • To address the requirements of gap analysis for species protection, as well as the needs of state and federal agencies for detailed digital land cover, a 43-class map at the vegetation alliance level was created for the state of Kansas using multi-temporal Thematic Mapper imagery. The mapping approach included the use of three-date multi-seasonal imagery, a two-stage classification approach that first masked out cropland areas using unsupervised classification and then mapped natural vegetation with supervised classification, visualization techniques utilizing a map of small multiples and field experts, and extensive use of ancillary data in post-hoc processing. Accuracy assessment was conducted at three levels of generalization (Anderson Level I, vegetation formation, and vegetation alliance) and three cross-tabulation approaches. Overall accuracy ranged from 51.7% to 89.4%, depending on level of generalization, while accuracy figures for individual alliance classes varied by area covered and level of sampling.