• Title/Summary/Keyword: Digital Terrain Model (DTM)

Search Result 83, Processing Time 0.021 seconds

CAS 500-1/2 Image Utilization Technology and System Development: Achievement and Contribution (국토위성정보 활용기술 및 운영시스템 개발: 성과 및 의의)

  • Yoon, Sung-Joo;Son, Jonghwan;Park, Hyeongjun;Seo, Junghoon;Lee, Yoojin;Ban, Seunghwan;Choi, Jae-Seung;Kim, Byung-Guk;Lee, Hyun jik;Lee, Kyu-sung;Kweon, Ki-Eok;Lee, Kye-Dong;Jung, Hyung-sup;Choung, Yun-Jae;Choi, Hyun;Koo, Daesung;Choi, Myungjin;Shin, Yunsoo;Choi, Jaewan;Eo, Yang-Dam;Jeong, Jong-chul;Han, Youkyung;Oh, Jaehong;Rhee, Sooahm;Chang, Eunmi;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.867-879
    • /
    • 2020
  • As the era of space technology utilization is approaching, the launch of CAS (Compact Advanced Satellite) 500-1/2 satellites is scheduled during 2021 for acquisition of high-resolution images. Accordingly, the increase of image usability and processing efficiency has been emphasized as key design concepts of the CAS 500-1/2 ground station. In this regard, "CAS 500-1/2 Image Acquisition and Utilization Technology Development" project has been carried out to develop core technologies and processing systems for CAS 500-1/2 data collecting, processing, managing and distributing. In this paper, we introduce the results of the above project. We developed an operation system to generate precision images automatically with GCP (Ground Control Point) chip DB (Database) and DEM (Digital Elevation Model) DB over the entire Korean peninsula. We also developed the system to produce ortho-rectified images indexed to 1:5,000 map grids, and hence set a foundation for ARD (Analysis Ready Data)system. In addition, we linked various application software to the operation system and systematically produce mosaic images, DSM (Digital Surface Model)/DTM (Digital Terrain Model), spatial feature thematic map, and change detection thematic map. The major contribution of the developed system and technologies includes that precision images are to be automatically generated using GCP chip DB for the first time in Korea and the various utilization product technologies incorporated into the operation system of a satellite ground station. The developed operation system has been installed on Korea Land Observation Satellite Information Center of the NGII (National Geographic Information Institute). We expect the system to contribute greatly to the center's work and provide a standard for future ground station systems of earth observation satellites.

Development of Computer Program for the Arrangement of the Forest-road Network to Maximize the Investment Effect on the Forest-road Construction (임도개설(林道開設)에 있어서 투자효과(投資效果)를 최대(最大)로 하는 임도배치(林道配置)프로그램 개발(開發))

  • Park, Sang-Jun;Son, Doo-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.4
    • /
    • pp.420-430
    • /
    • 2001
  • The object of this study is to develop a computer program for the arrangement of the forest-road network maximizing the investment effect in forest-road construction with factors such as terrains, forest physiognomy, management plan, logging system, cost of forest-road construction, capacity of inputted labour, capacity of timber production and so on. The operating system developed by this study is Korean Windows 95/98 and Microsoft Visual Basic ver. 5.0. User interface was designed as systematic structure, it is presented as a kind of GUI(graphic user interface). The developed program has result of the most suitable forest-road arrangement, has suitable forest-road density calculated with cost of logging, cost of forest-road construction, diversion ratio of forest-road, cost of walking in forest. And the most suitable forest-road arrangement was designed for forest-road arrangement network which maximized investment effect through minimizing the sum of cost of logging and cost of forest-road construction. Input data were divided into map data and control data. Digital terrain model, division of forest-road layout plan, division of forest function and the existing road network are obtained from map data. on the other hand, cost of logging related terrain division, diversion ratio of forest-road and working road, cost of forest-road construction, cost of walking, cost of labor, walking speed, capacity of inputted labor, capacity of timber production and total distance of forest-road are inputted from control data. And map data was designed to be inputted by mesh method for common matrix. This program can be used to construct a new forest-road or vice forest-road which compensate already existing forest-road for the functional forestry.

  • PDF

True Orthoimage Generation from LiDAR Intensity Using Deep Learning (딥러닝에 의한 라이다 반사강도로부터 엄밀정사영상 생성)

  • Shin, Young Ha;Hyung, Sung Woong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.363-373
    • /
    • 2020
  • During last decades numerous studies generating orthoimage have been carried out. Traditional methods require exterior orientation parameters of aerial images and precise 3D object modeling data and DTM (Digital Terrain Model) to detect and recover occlusion areas. Furthermore, it is challenging task to automate the complicated process. In this paper, we proposed a new concept of true orthoimage generation using DL (Deep Learning). DL is rapidly used in wide range of fields. In particular, GAN (Generative Adversarial Network) is one of the DL models for various tasks in imaging processing and computer vision. The generator tries to produce results similar to the real images, while discriminator judges fake and real images until the results are satisfied. Such mutually adversarial mechanism improves quality of the results. Experiments were performed using GAN-based Pix2Pix model by utilizing IR (Infrared) orthoimages, intensity from LiDAR data provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) through the ISPRS (International Society for Photogrammetry and Remote Sensing). Two approaches were implemented: (1) One-step training with intensity data and high resolution orthoimages, (2) Recursive training with intensity data and color-coded low resolution intensity images for progressive enhancement of the results. Two methods provided similar quality based on FID (Fréchet Inception Distance) measures. However, if quality of the input data is close to the target image, better results could be obtained by increasing epoch. This paper is an early experimental study for feasibility of DL-based true orthoimage generation and further improvement would be necessary.